Purpose:
To establish the thermal and performance effects of wearing a lower-body graduated compression garment (GCG) in a hot environment (35.2°C ± 0.1°C) with a representative radiant heat load (~800 W/m2) in contrast to a control (running shorts) and sham condition (a compression garment 1 size larger than that recommended by the manufacturer), with the latter included to establish any placebo effect.
Method:
Eight participants (mean ± SD; age 21 ± 2 y, height 1.77 ± 0.06 m, mass 72.8 ± 7.1 kg, surface area, 1.89 ± 0.10 m2) completed 3 treadmill tests at a fixed speed for 15 min followed by a self-paced 5-km time trial. Performance (completion time) and pacing (split time), thermal responses (aural, skin, and mean body temperature, cardiac frequency), and perceptual responses (rating of perceived exertion [RPE], thermal sensation, thermal comfort) were measured.
Results:
Performance in the compression group was not different than in either sham or control at any stage (P > .05); completion time 26.08 ± 4.08, 26.05 ± 3.27, and 25.18 ± 3.15 min, respectively. At the end of the 5-km time trial, RPE was not different; it was 19 ± 1 across conditions. In general, thermal and perceptual responses were not different, although the radiant heat load increased site-specific skin temperature (quadriceps) in the garment conditions.
Conclusion:
GCG did not enhance performance in a hot environment with a representative radiant heat load. The sham treatment did not benefit perception. GCG provided no evidence of performance enhancement.