Context: Women’s volleyball requires frequent and repetitive jumping that when performed with altered biomechanics, including kinematic or kinetic asymmetry, may place the athlete at high risk for injury. This study identified and analyzed lower-extremity biomechanical asymmetries in college women’s volleyball players during standard and sport-specific double-leg landing tasks. Design: Cross-sectional laboratory study. Methods: Eighteen female college volleyball players were analyzed using standard 3D motion capture techniques during a drop vertical jump and an unanticipated lateral reactive jump task. Repeated-measures multivariate analysis of variance identified asymmetries in kinematic and kinetic variables of each task. Results: Average symmetry indices ranged from 9.3% to 31.3% during the drop vertical jump and 11.9% to 25.6% during the reactive jump task. During the drop vertical jump, the dominant limb exhibited lower knee abduction moments (P = .03), ankle dorsiflexion moments (P = .02), ankle eversion moments (P = .003) and vertical ground reaction forces (P = .03), and greater ankle inversion moments (P = .001). Both kinematic (λ = 0.27, P = .03) and kinetic (λ = 0.12, P = .008) asymmetries were identified during the reactive jump task. The dominant limb exhibited greater peak knee flexion (P = .003) and ankle dorsiflexion (P = .02) angles, and greater ankle dorsiflexion (P = .005) and inversion (P = .03) moments than the nondominant limb. Conclusions: These asymmetries observed during double-leg landing tasks may predispose volleyball athletes to unilaterally higher ground reaction or muscle forces and ultimately a greater risk of injury during landing.
Search Results
You are looking at 1 - 2 of 2 items for :
- Author: Jeffrey B. Taylor x
- Journal of Sport Rehabilitation x
- Refine by Access: All Content x
Jeffrey B. Taylor, Anh-Dung Nguyen, Audrey E. Westbrook, Abigail Trzeciak, and Kevin R. Ford
Jeffrey B. Taylor, Alexis A. Wright, James M. Smoliga, J. Tyler DePew, and Eric J. Hegedus
Context:
Physical-performance tests (PPTs) are commonly used in rehabilitation and injury-prevention settings, yet normative values of upper-extremity PPTs have not been established in high-level athletes.
Objective:
To establish normative data values for the Closed Kinetic Chain Upper-Extremity Stability Test (CKCUEST) and Upper-Quarter Y-Balance Test (UQYBT) in college athletes and compare results between sports and to analyze the relationship between the 2 tests.
Design:
Observational.
Setting:
Laboratory/athletic facility.
Participants:
257 (118 male, 139 female) Division I athletes participating in basketball, soccer, baseball, lacrosse, volleyball, track and field, and cross-country.
Intervention:
CKCUEST and UQYBT scores were recorded as part of a comprehensive injury-risk screening battery.
Main Outcome Measure:
Pearson correlations assessed the relationship between all measures of the CKCUEST and UQYBT. A factorial ANOVA and a repeated-measures ANOVA (arm dominance) were used to assess interactions between sex, year in school, and sport for CKCUEST and UQYBT scores.
Results:
Normative values for the CKCUEST and UQYBT were established for 9 men’s and women’s college sports. No significant relationships were found between PPT scores. Men scored significantly higher than women for the CKCUEST (P = .002) and UQYBT (P = .010). Baseball players scored significantly higher than athletes from all other sports for the UQYBT (P < .001) but showed nonsignificant trends of lower scores for the CKCUEST than lower-extremity-dominant athletes such as runners (P = .063) and lacrosse players (P = .058).
Conclusions:
Results suggest that average CKCUEST and UQYBT scores in Division I athletes are distinct from those previously reported in recreationally active populations and that performance differences exist between sexes and sports. In addition, the CKCUEST and UQYBT appear to measure different constructs of performance and may complement each other as part of a screening battery.