Search Results

You are looking at 1 - 5 of 5 items for :

  • Author: Jesús G. Pallarés x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

José R. Lillo-Bevia and Jesús G. Pallarés

Purpose: To validate the new drive indoor trainer Hammer designed by Cycleops®. Methods: A total of 11 cyclists performed 44 randomized and counterbalanced graded exercise tests (100–500 W) at 70-, 85-, and 100-rpm cadences in seated and standing positions on 3 different Hammer units, while a scientific SRM system continuously recorded cadence and power output data. Results: No significant differences were detected between the 3 Hammer devices and the SRM for any workload, cadence, or pedaling condition (P value between 1.00 and .350), except for some minor differences (P = .03 and .04) found in the Hammer 1 at low workloads and for Hammer 2 and 3 at high workloads, all in seated position. Strong intraclass correlation coefficients were found between the power output values recorded by the Hammers and the SRM (≥.996; P = .001), independently from the cadence condition and seated position. Bland–Altman analysis revealed low bias (−5.5 to 3.8) and low SD of bias (2.5–5.3) for all testing conditions, except marginal values found for the Hammer 1 at high cadences and seated position (9.6 [6.6]). High absolute reliability values were detected for the 3 Hammers (150–500 W; coefficient of variation <1.2%; SEM <2.1). Conclusions: This new Cycleops trainer is a valid and reliable device to drive and measure power output in cyclists, providing an alternative to larger and more expensive laboratory ergometers and allowing cyclists to use their own bicycles.

Restricted access

Xabier Muriel, Javier Courel-Ibáñez, Victor Cerezuela-Espejo, and Jesús G. Pallarés

Purpose: The COVID-19 outbreak has challenged professional athletes’ training and competition routines in a way not seen before. This report aims to inform about the changes in training volume and intensity distribution and their effects on functional performance due to a 7-week home-confinement period in professional road cyclists from a Union Cycliste Internationale Pro Team. Methods: A total of 18 male professional cyclists (mean [SD] age = 24.9 [2.8] y, body mass = 66.5 [5.6] kg, maximal aerobic power = 449 [39] W; 6.8 [0.6] W/kg) were monitored during the 10 weeks before the lockdown (outdoor cycling) and the 7-week lockdown (indoor cycling turbo trainer). Data from the mean maximal power output (in watts per kilogram) produced during the best 5-minute and best 20-minute records and the training intensity distributions (weekly volumes at power-based training zones) were collected from WKO5 software. Results: Total training volume decreased 33.9% during the lockdown (P < .01). Weekly volumes by standardized zones (Z1 to Z6) declined between 25.8% and 52.2% (effect size from 0.83 to 1.57), except for Z2 (P = .38). There were large reductions in best 5-minute and best 20-minute performance (effect size > 1.36; P < .001) with losses between 1% and 19% in all the cyclists. Conclusions: Total indoor volumes of 12 hours per week, with 6 hours per week at low intensity (Z1 and Z2) and 2 hours per week at high intensity over the threshold (Z5 and Z6), were insufficient to maintain performance in elite road cyclists during the COVID-19 lockdown. Such performance declines should be considered to enable a safe and effective return to competition.

Restricted access

Xabier Muriel, Pedro L. Valenzuela, Manuel Mateo-March, Jesús G. Pallarés, Alejandro Lucia, and David Barranco-Gil

Purpose: To compare the physical demands and performance indicators of male professional cyclists of 2 different categories (Union Cycliste Internationale WorldTour [WT] and ProTeam [PT]) during a cycling grand tour. Methods: A WT team (n = 8, 31.4 [5.4] y) and a PT team (n = 7, 26.9 [3.3] y) that completed “La Vuelta 2020” volunteered to participate. Participants’ power output (PO) was registered, and measures of physical demand and physiological performance (kilojoules spent, training stress score, time spent at different PO bands/zones, and mean maximal PO [MMP] for different exertion durations) were computed. Results: WT achieved a higher final individual position than PT (31 [interquartile range = 33] vs 71 [59], P = .004). WT cyclists showed higher mean PO and kilojoule values than their PT peers and spent more time at high-intensity PO values (>5.25 W·kg−1) and zones (91%–120% of individualized functional threshold power) (Ps < .05). Although no differences were found for MMP values in the overall analysis (P > .05), subanalyses revealed that the between-groups gap increased through the race, with WT cyclists reaching higher MMP values for ≥5-minute efforts in the second and third weeks (Ps < .05). Conclusions: Despite the multifactorial nature of cycling performance, WT cyclists spend more time at high intensities and show higher kilojoules and mean PO than their PT referents during a grand tour. Although the highest MMP values attained during the whole race might not differentiate between WT and PT cyclists, the former achieve higher MMP values as the race progresses.

Restricted access

Alejandro Martínez-Cava, Alejandro Hernández-Belmonte, Javier Courel-Ibáñez, Elena Conesa-Ros, Ricardo Morán-Navarro, and Jesús G. Pallarés

Purpose: A variation of the traditional squat (SQ) rebound technique (REBOUND) including a momentary pause ∼2 seconds (PAUSE) between eccentric and concentric phases has been proposed. Although there is a consensus about the lower acute effects on performance of this PAUSE variant compared with traditional REBOUND technique, no information exists about the differences in longitudinal adaptations of these SQ executions. Methods: A total of 26 men were randomly assigned into the PAUSE (n = 13) or REBOUND (n = 13) groups and completed a 10-week velocity-based training using the SQ exercise, only differing in the technique. Neuromuscular adaptations were assessed by the changes in the 1-repetition maximum strength and mean propulsive velocity achieved against the absolute loads (in kilograms) common to pretest and posttest. Functional performance was evaluated by the following tests: countermovement jump, Wingate, and sprint time at 0 to 10, 10 to 20, and 0 to 20 m. Results: Whereas both groups showed significant increases in most of the neuromuscular tests (P < .05), the PAUSE (effect size [ES] = 0.76–1.12) presented greater enhancements than REBOUND (ES = 0.45–0.92). Although not significant, improvements in Wingate and sprint time at 0 to 10 and 0 to 20 m were higher for PAUSE (ES = 0.31–0.46) compared with REBOUND (ES = 0.10–0.29). Conversely, changes on countermovement jump and sprint time at 10 to 20 m were superior for REBOUND (ES = 0.17–0.88) than for PAUSE (ES = 0.09–0.75). Conclusion: Imposing a pause between eccentric and concentric phases in the SQ exercise could be an interesting strategy to increase neuromuscular and functional adaptations in sport actions that mainly depend on concentric contractions. Moreover, sport abilities highly dependent on the stretch-shortening cycle could benefit from the REBOUND or a combination of the 2 techniques.

Restricted access

Víctor Rodríguez-Rielves, Alejandro Martínez-Cava, Ángel Buendía-Romero, José Ramón Lillo-Beviá, Javier Courel-Ibáñez, Alejandro Hernández-Belmonte, and Jesús G. Pallarés

Purpose: To examine the reproducibility (intradevice and interdevice agreement) of the Rotor 2INpower device under a wide range of cycling conditions. Methods: Twelve highly trained male cyclists and triathletes completed 5 cycling tests, including graded exercise tests at different cadences (70–100 rpm), workloads (100–650 W), pedaling positions (seated and standing), and vibration conditions (20–40 Hz) and an 8-second maximal sprint (>1000 W). An intradevice analysis included a comparison between the power output registered by 3 units of Rotor 2INpower, whereas the power output provided by each one of these units and the gold-standard SRM crankset were compared for the interdevice analysis. Among others, statistical calculations included the standard error of measurement, expressed in absolute (in watts) and relative terms as the coefficient of variation (CV). Results: Except for the graded exercise test seated at 100 rpm/100 W (CV = 10.2%), the intradevice analysis showed an acceptable magnitude of error (CV ≤ 6.9%, standard error of measurement ≤ 12.3 W) between the 3 Rotor 2INpower. Similarly, these 3 units showed an acceptable agreement with the gold standard in all graded exercise test situations (CV ≤ 4.0%, standard error of measurement ≤ 13.1 W). On the other hand, both the intradevice and interdevice agreements proved to be slightly reduced under high cadences (intradevice: CV ≤ 10.2%; interdevice: CV ≤ 4.0%) and vibration (intradevice: CV ≤ 4.0%; interdevice: CV ≤ 3.6%), as well as during standing pedaling (intradevice: CV ≤ 4.1%; interdevice: CV ≤ 2.5%). Although within the limits of an acceptable agreement, measurement errors increased during the sprint tests (CV ≤ 7.4%). Conclusions: Based on these results, the Rotor 2INpower could be considered a reproducible tool to monitor power output in most cycling situations.