Search Results

You are looking at 1 - 6 of 6 items for :

  • Author: Kate L. Pumpa x
  • Physical Education and Coaching x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Jocelyn K. Mara, Kevin G. Thompson, and Kate L. Pumpa

Purpose:

To investigate the physical and physiological response to different formats of various-sided games.

Methods:

Eighteen elite women’s soccer players wore 15-Hz global positioning system devices and heart-rate (HR) monitors during various-sided games (small, 4 vs 4 and 5 vs 5; medium, 6 vs 6 and 7 vs 7; large, 8 vs 8 and 9 vs 9).

Results:

Players covered more relative sprinting distance during large-sided games than in small-sided (P < .001, d = 0.69) and medium-sided (P < .001, d = 0.54) games. In addition, a greater proportion of total acceleration efforts that had a commencement velocity <1 m/s were observed in small-sided games (44.7% ± 5.5%) than in large-sided games (36.7% ± 10.6%) (P = .018, d = 0.94). This was accompanied by a greater proportion of acceleration efforts with a final velocity equivalent to the sprint threshold in large-sided games (15.4% ± 7.7%) than in small-sided games (5.2% ± 2.5%) (P < .001, d = 1.78). The proportion of time spent in HR zone 4 (>85% maximum HR) was greater during small-sided games (69.8% ± 2.5%) than in medium- (62.1% ± 2.8%, d = 2.90) and large-sided games (54.9% ± 3.1%) (P < .001, d = 5.29).

Conclusions:

The results from this study demonstrate that coaches can use small-sided games as an aerobic conditioning stimulus and to develop players’ explosiveness and repeat-sprint ability over short durations. Large-sided games can be used to maintain aerobic capacity and develop maximum speed over longer distances.

Restricted access

Kate L. Pumpa, Sharon M. Madigan, Ruth E. Wood-Martin, Richelle Flanagan, and Noreen Roche

The use of sport supplements presents a dilemma for many of those involved in supporting athletes, including coaches, families, support staff, and the athletes themselves. Often the information that they source can be incorrect and promote a biased view regarding the use of nutritional supplements. The aim of this case study was to describe the process that occurred around the development of a series of targeted educational fact sheets on a range of nutritional supplements for Irish athletes. It describes the initiation and support of the process by the Irish Sports Council; one of its subgroups, the Food and Food Supplements Committee; and the Irish Institute of Sport. A needs assessment through questionnaires was carried out to establish the most commonly used sport nutrition supplements by athletes age 16 or over in Ireland. Respondents completed 105 questionnaires over a 4-mo period in 2008–09 that led to the production of 20 supplement fact sheets. These supplement fact sheets will enable Irish athletes to access high-quality, up-to-date, scientific information about the supplements they have reported consuming. Since personal reading had a strong influence over athletes’ decision-making process for taking nutritional supplements, as did scientific research, fact sheets available on the Internet from a reliable source are an ideal way to educate Irish athletes.

Restricted access

Disa J. Smee, Anthony Walker, Ben Rattray, Julie A. Cooke, Ben G. Serpell, and Kate L. Pumpa

Given the importance of body composition in maintaining optimal physical and functional capacities, the use of appropriate, field-based assessment tools should be a priority to assist in maintaining the occupational safety of firefighters and the community. For ease, body mass index has often been used to assess these changes. However, it is limited in its accuracy. The purposes of this study were twofold: (a) to compare the validity of different measures of body composition against dual-energy X-ray absorptiometry (DXA) in urban firefighters and (b) to assess these measures in their ability to provide meaningful interpretation of criteria-driven categories of adiposity. A total of 64 male firefighters (age = 44.0 ± 9.5 years) underwent full anthropometric profiling (predictor equations used to determine body fat percentage [BF%]), bioelectrical impedance analysis (BIA), and DXA assessments. Participants’ body mass index was calculated, and BF% and lean mass were determined along with criteria-driven categorizations of adiposity. Anthropometric (skinfolds) predictor equations (e.g., mean bias = −4.4% for BF%) were typically closer to DXA measures, compared with BIA (9.4% for BF%). However, when determining categories of criteria-driven adiposity, BIA (42.9% overweight or obese) provided closer estimates to the DXA-determined distribution (44.6%) than anthropometric-based measures (up to 40%). Body mass index appears an inappropriate measure for accurately determining categories of adiposity with 64.1% classified as overweight or obese. Given the logistical constraints of anthropometric profiling, and the closeness of BIA to DXA in adiposity categories, BIA may be a suitable alternative to DXA for assessing body composition in professional urban firefighters.

Restricted access

Jocelyn K. Mara, Kevin G. Thompson, Kate L. Pumpa, and Nick B. Ball

Purpose:

To investigate the variation in training demands, physical performance, and player well-being across a women’s soccer season.

Methods:

Seventeen elite female players wore GPS tracking devices during every training session (N = 90) throughout 1 national-league season. Intermittent high-speed-running capacity and 5-, 15-, and 25-m-sprint testing were conducted at the beginning of preseason, end of preseason, midseason, and end of season. In addition, subjective well-being measures were selfreported daily by players over the course of the season.

Results:

Time over 5 m was lowest at the end of preseason (mean 1.148 s, SE 0.017 s) but then progressively deteriorated to the end of the season (P < .001). Sprint performance over 15 m improved by 2.8% (P = .013) after preseason training, while 25-m-sprint performance peaked at midseason, with a 3.1% (P = .05) improvement from the start of preseason, before declining at the end of season (P = .023). Training demands varied between phases, with total distance and high-speed distance greatest during preseason before decreasing (P < .001) during the early- and late-season phases. Endurance capacity and well-being measures did not change across training phases.

Conclusions:

Monitoring training demands and subsequent physical performance in elite female soccer players allow coaches to ensure that training periodization goals are being met and related positive training adaptations are being elicited.

Restricted access

Kathleen H. Miles, Brad Clark, Jocelyn K. Mara, Peter M. Fowler, Joanna Miller, and Kate L. Pumpa

Purpose: To compare the habitual sleep of female basketball and soccer athletes to age- and sex-matched controls and to characterize the sleep of basketball and soccer athletes at different competition locations and on the days surrounding competition. Methods: Using an observational case–control design, 41 female participants were recruited to participate, consisting of 11 basketball athletes (mean [SD]: age = 24.1 [4.9] y), 10 soccer athletes (24.8 [6.4] y), and 20 nonathletic controls (24.2 [2.8] y). Sleep was monitored using actigraphy for four 7-day periods throughout the preseason and subsequent competition season. Generalized linear models were used to analyze the effect of group and competition situation (eg, Home or Away) on sleep. Results: During habitual conditions, basketball athletes had longer sleep durations (7.4 [1.5] h) than soccer athletes (7.0 [1.2] h, P < .001) and controls (7.3 [1.2] h, P = .002). During competition, basketball and soccer athletes had longer sleep durations following home (7.7 [1.7] and 7.2 ± 1.3 h) compared with away games (6.8 [1.8] and 7.0 [1.3] h). In addition, basketballers went to bed earlier (23:49 [01:25]) and woke earlier (07:22 [01:59]) following away games compared with soccer athletes (00:10 [01:45] and 08:13 [01:45]). Conclusions: Basketballers had longer habitual sleep durations compared with soccer athletes and nonathletic controls. During competition, basketballers had earlier bed and wake times compared with soccer athletes following away games, highlighting the need for individualized sleep strategies.

Open access

Naroa Etxebarria, Nicole A. Beard, Maree Gleeson, Alice Wallett, Warren A. McDonald, Kate L. Pumpa, and David B. Pyne

Gastrointestinal disturbances are one of the most common issues for endurance athletes during training and competition in the heat. The relationship between typical dietary intake or nutritional interventions and perturbations in or maintenance of gut integrity is unclear. Twelve well-trained male endurance athletes (peak oxygen consumption = 61.4 ± 7.0 ml·kg−1·min−1) completed two trials in a randomized order in 35 °C (heat) and 21 °C (thermoneutral) conditions and kept a detailed nutritional diary for eight consecutive days between the two trials. The treadmill running trials consisted of 15 min at 60% peak oxygen consumption, 15 min at 75% peak oxygen consumption, followed by 8 × 1-min high-intensity efforts. Venous blood samples were taken at the baseline, at the end of each of the three exercise stages, and 1 hr postexercise to measure gut integrity and the permeability biomarker concentration for intestinal fatty-acid-binding protein, lipopolysaccharide, and lipopolysaccharide-binding protein. The runners self-reported gut symptoms 1 hr postexercise and 3 days postexercise. The heat condition induced large (45–370%) increases in intestinal fatty-acid-binding protein, lipopolysaccharide-binding protein, and lipopolysaccharide concentrations compared with the baseline, but induced mild gastrointestinal symptoms. Carbohydrate and polyunsaturated fat intake 24 hr preexercise were associated with less lipopolysaccharide translocation. Protein, carbohydrate, total fat, and polyunsaturated fat intake (8 days) were positively associated with the percentage increase of intestinal fatty-acid-binding protein in both conditions (range of correlations, 95% confidence interval = .62–.93 [.02, .98]). Typical nutrition intake partly explained increases in biomarkers and the attenuation of symptoms induced by moderate- and high-intensity exercise under both heat and thermoneutral conditions.