Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: Kevin Ball x
  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Elaine Tor, David L. Pease, and Kevin A. Ball

During the underwater phase of the swimming start drag forces are constantly acting to slow the swimmer down. The current study aimed to quantify total drag force as well as the specific contribution of wave drag during the underwater phase of the swimming start. Swimmers were towed at three different depths (surface, 0.5 m, 1.0 m) and four speeds (1.6, 1.9, 2.0, 2.5 m·s–1), totaling 12 conditions. Wave drag and total drag were measured for each trial. Mixed modeling and plots were then used to determine the relationships between each towing condition and the amount of drag acting on the swimmer. The results of this study show large decreases in total drag as depth increases, regardless of speed (–19.7% at 0.5 m and –23.8% at 1.0 m). This is largely due to the significant reduction in wave drag as the swimmers traveled at greater depth. It is recommended that swimmers travel at least 0.5 m below the surface to avoid excessive drag forces. Swimmers should also perform efficient breakouts when transitioning into free swimming to reduce the duration spent just below the surface where drag values are reported at their highest.

Restricted access

Elaine Tor, David L. Pease, and Kevin A. Ball

The swimming start is highly influential to overall competition performance. Therefore, it is paramount to develop reliable methods to perform accurate biomechanical analysis of start performance for training and research. The Wetplate Analysis System is a custom-made force plate system developed by the Australian Institute of Sport—Aquatic Testing, Training and Research Unit (AIS ATTRU). This sophisticated system combines both force data and 2D digitization to measure a number of kinetic and kinematic parameter values in an attempt to evaluate start performance. Fourteen elite swimmers performed two maximal effort dives (performance was defined as time from start signal to 15 m) over two separate testing sessions. Intraclass correlation coefficients (ICC) were used to determine each parameter’s reliability. The kinetic parameters all had ICC greater than 0.9 except the time of peak vertical force (0.742). This may have been due to variations in movement initiation after the starting signal between trials. The kinematic and time parameters also had ICC greater than 0.9 apart from for the time of maximum depth (0.719). This parameter was lower due to the swimmers varying their depth between trials. Based on the high ICC scores for all parameters, the Wetplate Analysis System is suitable for biomechanical analysis of swimming starts.

Restricted access

Kevin A. Ball, Russell J. Best, and Tim V. Wrigley

Research into the relationship between body sway, aim-point fluctuation, and performance in pistol shooting has been inconclusive. The present study reex-amined this relationship on an interindividual basis, as done in previous studies, and via intraindividual analysis, not previously examined. Five elite pistol shooters performed 20 shots similar to competition conditions. For each shot, body-sway parameters and aim-point fluctuation parameters were quantified for the time period 1 s to shot. An AMTI LG6-4 force plate was used to measure body-sway parameters, while a SCATT shooting analysis system was used to measure aim-point fluctuation and shooting performance. Multiple regression analysis indicated that body sway was related to performance for one shooter, aim-point fluctuation was related to performance for three shooters, and body sway was related to aim-point fluctuation for four shooters. These relationships were specific to the individual, with the strength of association and parameters of importance being different for different shooters. However, interindividual analysis indicated that only aim-point fluctuation was related to performance. It was concluded that body sway, aim-point fluctuation, and performance are important in elite level pistol shooting, and performance errors at the elite level are individual-specific. Individual analysis should be a priority when examining elite level sports performance.