Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Laurent Bannock x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Mayur K. Ranchordas, Laurent Bannock, and Scott L. Robinson

Professional soccer players are exposed to large amounts of physiological and psychological stress, which can increase infection risk and threaten availability for training and competition. Accordingly, it is important for practitioners to implement strategies that support player well-being and prevent illness. This case study demonstrates how a scientifically supported and practically applicable nutrition and lifestyle strategy can reduce infection incidence in an illness-prone professional soccer player. In the 3 months before the intervention, the player had 3 upper-respiratory tract infections (URTIs) and subsequently missed 3 competitive matches and 2 weeks’ training. He routinely commenced morning training sessions in the fasted state and was estimated to be in a large daily energy deficit. Throughout the 12-week intervention, the amount, composition, and timing of energy intake was altered, quercetin and vitamin D were supplemented, and the player was provided with a daily sleep and hygiene protocol. There was a positive increase in serum vitamin D 25(OH) concentration from baseline to Week 12 (53 n·mol-1 to 120 n·mol-1) and salivary immunoglobulin-A (98 mg·dl-1 to 135 mg·dl-1), as well as a decline in the number of URTI symptoms (1.8 ± 2.0 vs. 0.25 ± 0.5 for Weeks 0–4 and Weeks 8–12, respectively). More important, he maintained availability for all training and matches over the 12-week period. We offer this case study as a real-world applied example for other players and practitioners seeking to deploy nutrition and lifestyle strategies to reduce risk of illness and maximize player availability.

Open access

Oliver C. Witard, Laurent Bannock, and Kevin D. Tipton

The acute response of muscle protein synthesis (MPS) to resistance exercise and nutrition is often used to inform recommendations for exercise programming and dietary interventions, particularly protein nutrition, to support and enhance muscle growth with training. Those recommendations are worthwhile only if there is a predictive relationship between the acute response of MPS and subsequent muscle hypertrophy during resistance exercise training. The metabolic basis for muscle hypertrophy is the dynamic balance between the synthesis and degradation of myofibrillar proteins in muscle. There is ample evidence that the process of MPS is much more responsive to exercise and nutrition interventions than muscle protein breakdown. Thus, it is intuitively satisfying to translate the acute changes in MPS to muscle hypertrophy with training over a longer time frame. Our aim is to examine and critically evaluate the strength and nature of this relationship. Moreover, we examine the methodological and physiological factors related to measurement of MPS and changes in muscle hypertrophy that contribute to uncertainty regarding this relationship. Finally, we attempt to offer recommendations for practical and contextually relevant application of the information available from studies of the acute response of MPS to optimize muscle hypertrophy with training.