Search Results

You are looking at 1 - 6 of 6 items for :

  • Author: Lawrence L. Spriet x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Caffeine and Performance

Lawrence L. Spriet

Caffeine ingestion (3-9 mg/kg body weight) prior to exercise increases performance during prolonged endurance exercise and short-term intense exercise lasting ~5 min in the laboratory. These results are generally reported in well-trained elite or recreational subjects. However, there is a lack of well-controlled field studies to determine the applicability of laboratory results to the athletic world. Caffeine does not appear to enhance performance during incremental exercise tests lasting 8-20 min and during sprinting lasting less than 90 s, although research examining sprinting is rare. In addition, the mechanisms responsible for any improvement in endurance and short-term exercise have not been clearly established. The ergogenic effects of caffeine are present with urinary caffeine levels that are below the limit of 12 µg/ml allowed by the International Olympic Committee, which raises serious ethical issues regarding the use of caffeine to improve athletic performance. One solution would be to add caffeine to the list of banned substances, thereby requiring athletes to abstain from caffeine ingestion 48-72 hr prior to competition.

Restricted access

Effects of Microhydrin® Supplementation on Endurance Performance and Metabolism in Well-Trained Cyclists

Lee R. Glazier, Trent Stellingwerff, and Lawrence L. Spriet

This study investigated whether the supplement Microhydrin® (MH) contains silica hydride bonds (Si-H) and if Microhydrin supplementation increased performance or altered metabolism compared to placebo (PL) during prolonged endurance cycling. Seven endurance-trained male cyclists consumed 9.6 g of MH or PL over 48 h in a randomized, double-blind, crossover design. Subjects cycled at ~ 70% of their VO2peak, coupled with five 2-min bursts at 85% VO2peak to simulate hill climbs over 2 h. Subjects then completed a time trial, which required them to complete 7 kJ/kg body mass as quickly as possible. Infrared spectrometry analysis showed a complete absence of Si-H bonds in MH. There was no difference in time trial performance between the 2 trials (PL: 2257 ± 120 s vs. MH: 2345 ± 152 s). Measured oxygen uptake, respiratory exchange ratio, carbohydrate (MH: 2.99 ± 0.13 g/min; PL: 2.83 ± 0.17 g/min avg. over 2 h) and fat (MH: 0.341 ± 0.06 g/min; PL: 0.361 ± 0.07 g/min) oxidation rates and all blood parameters (lactate, glucose, and free fatty acids) were all unaffected by MH supplementation. The volume of expired CO2 and ventilation were significantly greater with MH supplementation (P ≤ 0.05). The results indicate that oral Microhydrin supplementation does not enhance cycling time trial performance or alter metabolism during prolonged submaximal exercise in endurance-trained cyclists.

Restricted access

The Effect of Acute Taurine Ingestion on Endurance Performance and Metabolism in Well-Trained Cyclists

Jane A. Rutherford, Lawrence L. Spriet, and Trent Stellingwerff

This study examined whether acute taurine (T) ingestion before prolonged cycling would improve time-trial (TT) performance and alter whole-body fuel utilization compared with a control (CON) trial and a placebo (PL) trial in which participants were told they received taurine but did not. Eleven endurance-trained male cyclists (27.2 ± 1.5 yr, 74.3 ± 2.3 kg, 59.9 ± 2.3 ml · kg−1 · min−1; M ± SEM) completed 3 trials in a randomized, crossover, blinded design in which they consumed a noncaloric sweetened beverage with either 1.66 g of T or nothing added (CON, PL) 1 hr before exercise. Participants then cycled at 66.5% ± 1.9% VO2max for 90 min followed immediately by a TT (doing 5 kJ of work/kg body mass as fast as possible). Data on fluid administration, expired gas, heart rate, and ratings of perceived exertion were collected at 15-min intervals during the 90-min cycling ride, but there were no differences recorded between trials. There was no difference in TT performance between any of the 3 trials (1,500 ± 87 s). Average carbohydrate (T 2.73 ± 0.21, CON 2.88 ± 0.19, PL 2.89 ± 0.20 g/min) and fat (T 0.45 ± 0.05, CON 0.39 ± 0.04, PL 0.39 ± 0.05 g/min) oxidation rates were unaffected by T supplementation. T ingestion resulted in a 16% increase (5 g, ~84 kJ; p < .05) in total fat oxidation over the 90-min exercise period compared with CON and PL. The acute ingestion of 1.66 g of T before exercise did not enhance TT performance but did result in a small but significant increase in fat oxidation during submaximal cycling in endurance-trained cyclists.

Restricted access

Increase in Skeletal-Muscle Glycogenolysis and Perceived Exertion With Progressive Dehydration During Cycling in Hydrated Men

Heather M. Logan-Sprenger, George J. F. Heigenhauser, Graham L. Jones, and Lawrence L. Spriet

This study investigated the effects of progressive mild dehydration during cycling on whole-body substrate oxidation and skeletal-muscle metabolism in recreationally active men. Subjects (N = 9) cycled for 120 min at ~65% peak oxygen uptake (VO2peak 22.7 °C, 32% relative humidity) with water to replace sweat losses (HYD) or without fluid (DEH). Blood samples were taken at rest and every 20 min, and muscle biopsies were taken at rest and at 40, 80, and 120 min of exercise. Subjects lost 0.8%, 1.8%, and 2.7% body mass (BM) after 40, 80, and 120 min of cycling in the DEH trial while sweat loss was not significantly different between trials. Heart rate was greater in the DEH trial from 60 to 120 min, and core temperature was greater from 75 to 120 min. Rating of perceived exertion was higher in the DEH trial from 30 to 120 min. There were no differences in VO2, respiratory-exchange ratio, total carbohydrate (CHO) oxidation (HYD 312 ± 9 vs. DEH 307 ± 10 g), or sweat rate between trials. Blood lactate was significantly greater in the DEH trial from 20 to 120 min with no difference in plasma free fatty acids or epinephrine. Glycogenolysis was significantly greater (24%) over the entire DEH vs. HYD trial (433 ± 44 vs. 349 ± 27 mmol · kg−1 · dm−1). In conclusion, dehydration of <2% BM elevated physiological parameters and perceived exertion, as well as muscle glycogenolysis, during exercise without affecting whole-body CHO oxidation.

Restricted access

Mild Dehydration Does Not Influence Performance Or Skeletal Muscle Metabolism During Simulated Ice Hockey Exercise In Men

Matthew S. Palmer, George J.F. Heigenhauser, MyLinh Duong, and Lawrence L. Spriet

This study determined whether mild dehydration influenced skeletal muscle glycogen use, core temperature or performance during high-intensity, intermittent cycle-based exercise in ice hockey players vs. staying hydrated with water. Eight males (21.6 ± 0.4 yr, 183.5 ± 1.6 cm, 83.9 ± 3.7 kg, 50.2 ± 1.9 ml·kg-1·min-1) performed two trials separated by 7 days. The protocol consisted of 3 periods (P) containing 10 × 45-s cycling bouts at ~133% VO2max, followed by 135 s of passive rest. Subjects drank no fluid and dehydrated during the protocol (NF), or maintained body mass by drinking WATER. Muscle biopsies were taken at rest, immediately before and after P3. Subjects were mildly dehydrated (-1.8% BM) at the end of P3 in the NF trial. There were no differences between the NF and WATER trials for glycogen use (P1+P2; 350.1 ± 31.9 vs. 413.2 ± 33.2, P3; 103.5 ± 16.2 vs. 131.5 ± 18.9 mmol·kg dm-1), core temperature (P1; 37.8 ± 0.1 vs. 37.7 ± 0.1, P2; 38.2 ± 0.1 vs. 38.1 ± 0.1, P3; 38.3 ± 0.1 vs. 38.2 ± 0.1 °C) or performance (P1; 156.3 ± 7.8 vs. 154.4 ± 8.2, P2; 150.5 ± 7.8 vs. 152.4 ± 8.3, P3; 144.1 ± 8.7 vs. 148.4 ± 8.7 kJ). This study demonstrated that typical dehydration experienced by ice hockey players (~1.8% BM loss), did not affect glycogen use, core temperature, or voluntary performance vs. staying hydrated by ingesting water during a cycle-based simulation of ice hockey exercise in a laboratory environment.

Open access

IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete

Ronald J. Maughan, Louise M. Burke, Jiri Dvorak, D. Enette Larson-Meyer, Peter Peeling, Stuart M. Phillips, Eric S. Rawson, Neil P. Walsh, Ina Garthe, Hans Geyer, Romain Meeusen, Luc van Loon, Susan M. Shirreffs, Lawrence L. Spriet, Mark Stuart, Alan Vernec, Kevin Currell, Vidya M. Ali, Richard G.M. Budgett, Arne Ljungqvist, Margo Mountjoy, Yannis Pitsiladis, Torbjørn Soligard, Uğur Erdener, and Lars Engebretsen

Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete’s health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete’s health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.