Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: Lawrence L. Spriet x
  • International Journal of Sports Physiology and Performance x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Internal Load of Male Varsity Ice Hockey Players During Training and Games Throughout an Entire Season

Jessica L. Bigg, Alexander S.D. Gamble, and Lawrence L. Spriet

Purpose: The purpose of this study was to quantify the internal load of male varsity ice hockey players, using both sessional rating of perceived exertion (sRPE) and the heart rate–derived physiological measure of training impulse (TRIMP), during training sessions and competitions throughout an entire season. Methods: Twenty-seven male varsity ice hockey players (22.1 [1.1] y, 85.9 [5.4] kg, 181.3 [5.1] cm) were included in this longitudinal prospective cohort study. Results: The internal load was significantly higher (P < .001) for games (sRPE: 403 [184] arbitrary units [AU], TRIMP: 98 [59] AU) compared with training sessions (sRPE: 281 [130] AU, TRIMP: 71 [35] AU). The regular season had the highest internal load compared with the preseason and postseason. There was evidence of microcycle periodization with training sessions several days prior to game days having the highest internal load (both sRPE and TRIMP) and tapering down as the subsequent training sessions approached game day. For positional comparisons, the goalies had higher sRPE (346 [151] AU, P < .001) and TRIMP (99 [64] AU, P < .001) compared with defense (sRPE: 295 [130] AU, TRIMP: 65 [29] AU) and forwards (sRPE: 264 [123] AU, TRIMP: 70 [30] AU) for training sessions, but no significant differences were present for competitions. Finally, there was an overall moderate and statistically significant relationship between the sRPE and TRIMP internal load measures (r = .434, P < .001). Conclusions: Internal load was greater during competitions versus training sessions in male varsity ice hockey players, and the microcycle assessment demonstrated that training sessions were tailored to game day. Mesocycle assessment revealed the highest internal loads during the regular season due to dense game scheduling and a short season.

Restricted access

Ischemic Preconditioning: No Influence on Maximal Sprint Acceleration Performance

Kyle M.A. Thompson, Alanna K. Whinton, Shane Ferth, Lawrence L. Spriet, and Jamie F. Burr

Ischemic preconditioning (IPC) was initially developed to protect the myocardium from ischemia through altered cardiocyte metabolism. Because of the observed effects on metabolism and oxygen kinetics, IPC gained interest as a potential ergogenic aid in sports. Limited research evaluating the effects of IPC on maximal short-duration activities has been performed, and of the existing literature, mixed outcomes resulting from intrasubject variation may have clouded the efficacy of this technique for enhancing sprint performance. Therefore, the current study employed a randomized repeated-measures crossover design with IPC, placebo (SHAM), and control conditions while using sprint-trained athletes (N = 18) to determine the effect of IPC (3 × 5-min occlusions, with 5-min reperfusion), concluding 15 min prior to maximal 10-s and 20-m sprinting. A visual analog scale was used in conjunction with the sprint trials to evaluate any possible placebo effect on performance. Despite a “significantly beneficial” perception of the IPC treatment compared with the SHAM trials (P < .001), no changes in sprint performance were observed after either the IPC or SHAM condition over 10 m (IPC Δ  < 0.01 [0.02] s, SHAM Δ  < 0.01 [0.02] s) or 20 m (IPC Δ = −0.01 [0.03] s, SHAM Δ < 0.01 [0.03] s) compared with control. Thus, an IPC protocol does not improve 10- or 20-m sprint performance in sprint-trained athletes.

Restricted access

Impairment of Thermoregulation and Performance via Mild Dehydration in Ice Hockey Goaltenders

Devin G. McCarthy, Kate A. Wickham, Tyler F. Vermeulen, Danielle L. Nyman, Shane Ferth, Jamie M. Pereira, Dennis J. Larson, Jamie F. Burr, and Lawrence L. Spriet

During play, ice hockey goaltenders routinely dehydrate through sweating and lose ≥2% body mass, which may impair thermoregulation and performance. Purpose: This randomized, crossover study examined the effects of mild dehydration on goaltender on-ice thermoregulation, heart rate, fatigue, and performance. Methods: Eleven goaltenders played a 70-minute scrimmage followed by a shootout and drills to analyze reaction time and movements. On ice, they either consumed no fluid (NF) and lost 2.4% (0.3%) body mass or maintained body mass with water (WAT) or a carbohydrate–electrolyte solution (CES). Save percentage, rating of perceived exertion, heart rate, and core temperature were recorded throughout, and a postskate questionnaire assessed perceived fatigue. Results: Relative to NF, intake of both fluids decreased heart rate (interaction: P = .03), core temperature (peak NF = 39.0°C [0.1°C], WAT = 38.6°C [0.1°C], and CES = 38.5°C [0.1°C]; P = .005), and rating of perceived exertion in the scrimmage (post hoc: P < .04), as well as increasing save percentage in the final 10 minutes of scrimmage (NF = 75.8% [1.9%], WAT = 81.7% [2.3%], and CES = 81.3% [2.3%], post hoc: P < .04). In drills, movement speed (post hoc: P < .05) and reaction time (post hoc: P < .04) were slower in the NF versus both fluid conditions. Intake of either fluid similarly reduced postskate questionnaire scores (condition: P < .0001). Only CES significantly reduced rating of perceived exertion in drills (post hoc: P < .05) and increased peak movement power versus NF (post hoc: P = .02). Shootout save percentage was similar between conditions (P = .37). Conclusions: Mild dehydration increased physiological strain and fatigue and decreased ice hockey goaltender performance versus maintaining hydration. Also, maintaining hydration with a CES versus WAT may further reduce perceived fatigue and positively affect movements.