Search Results

You are looking at 1 - 9 of 9 items for :

  • Author: Luc J. Martin x
  • Physical Education and Coaching x
  • All content x
Clear All Modify Search
Restricted access

Jordan D. Herbison, Luc J. Martin and Mustafa Sarkar

Adversity is viewed as both an inevitable and an important experience for elite athletes. The purpose of this study was to explore elite athletes’ perceptions of the experiences and characteristics that helped them overcome a shared sport-specific adversity. Semistructured interviews were conducted with 12 professional athletes (M age = 27.25, SD = 3.28 yr) who had progressed to careers in the National Hockey League (NHL) despite not being selected in the annual amateur entry draft. Participants discussed their long-term objectives of playing in the NHL, previous experiences with adversity, certain psychological characteristics that facilitated their progression (e.g., competitiveness, passion, confidence), and the significance of social support as key factors that helped them overcome the initial and subsequent adversities associated with being unselected during the amateur entry draft. Practical implications and proposed avenues for future research are discussed in the context of the study’s limitations.

Restricted access

Sarah Lawrason, Jennifer Turnnidge, Luc J. Martin and Jean Côté

To maximize the effectiveness of coach development, educational programs should target coaches’ interpersonal behaviors, be informed by behavior-change techniques, and incorporate comprehensive evaluation procedures. Thus, informed by the full-range leadership model (see Bass and Riggio in 2006) and the Behaviour Change Wheel (see Michie et al. in 2011), Turnnidge and Côté in 2017 developed the Transformational Coaching Workshop (TCW). The purpose of this study was to evaluate the TCW’s effectiveness through observation before and after coaches’ workshop participation. Participants included 8 male head coaches of youth soccer teams. Systematic observation and coding using the Coach Leadership Assessment System were employed pre- and postworkshop to examine coaches’ leadership behaviors. Coaches made improvements in the types of leadership behaviors used and how they were conveyed. This study demonstrates that systematic observation can be implemented to explore real-world changes in behaviors. Future research should examine the impact of the TCW on athlete outcomes.

Restricted access

Naomi M. Cermak, Martin J. Gibala and Luc J.C. van Loon

Six days of dietary nitrate supplementation in the form of beetroot juice (~0.5 L/d) has been reported to reduce pulmonary oxygen uptake (VO2) during submaximal exercise and increase tolerance of high-intensity work rates, suggesting that nitrate can be a potent ergogenic aid. Limited data are available regarding the effect of nitrate ingestion on athletic performance, and no study has investigated the potential ergogenic effects of a small-volume, concentrated dose of beetroot juice. The authors tested the hypothesis that 6 d of nitrate ingestion would improve time-trial performance in trained cyclists. Using a double-blind, repeated-measures crossover design, 12 male cyclists (31 ± 3 yr, VO2peak = 58 ± 2 ml · kg−1 · min−1, maximal power [Wmax] = 342 ± 10 W) ingested 140 ml/d of concentrated beetroot (~8 mmol/d nitrate) juice (BEET) or a placebo (nitrate-depleted beetroot juice; PLAC) for 6 d, separated by a 14-d washout. After supplementation on Day 6, subjects performed 60 min of submaximal cycling (2 × 30 min at 45% and 65% Wmax, respectively), followed by a 10-km time trial. Time-trial performance (953 ± 18 vs. 965 ± 18 s, p < .005) and power output (294 ± 12 vs. 288 ± 12 W, p < .05) improved after BEET compared with PLAC supplementation. Submaximal VO2 was lower after BEET (45% Wmax = 1.92 ± 0.06 vs. 2.02 ± 0.09 L/min, 65% Wmax 2.94 ± 0.12 vs. 3.11 ± 0.12 L/min) than with PLAC (main effect, p < .05). Wholebody fuel selection and plasma lactate, glucose, and insulin concentrations did not differ between treatments. Six days of nitrate supplementation reduced VO2 during submaximal exercise and improved time-trial performance in trained cyclists.

Restricted access

Milou Beelen, Louise M. Burke, Martin J. Gibala and Luc J.C. van Loon

During postexercise recovery, optimal nutritional intake is important to replenish endogenous substrate stores and to facilitate muscle-damage repair and reconditioning. After exhaustive endurance-type exercise, muscle glycogen repletion forms the most important factor determining the time needed to recover. Postexercise carbohydrate (CHO) ingestion has been well established as the most important determinant of muscle glycogen synthesis. Coingestion of protein and/or amino acids does not seem to further increase muscle glycogensynthesis rates when CHO intake exceeds 1.2 g · kg−1 · hr−1. However, from a practical point of view it is not always feasible to ingest such large amounts of CHO. The combined ingestion of a small amount of protein (0.2–0.4 g · (0.2−0.4 g · kg−1 · hr−1) with less CHO (0.8 g · kg−1 · hr−1) stimulates endogenous insulin release and results in similar muscle glycogen-repletion rates as the ingestion of 1.2 g · kg−1 · hr−1 CHO. Furthermore, postexercise protein and/or amino acid administration is warranted to stimulate muscle protein synthesis, inhibit protein breakdown, and allow net muscle protein accretion. The consumption of ~20 g intact protein, or an equivalent of ~9 g essential amino acids, has been reported to maximize muscle protein-synthesis rates during the first hours of postexercise recovery. Ingestion of such small amounts of dietary protein 5 or 6 times daily might support maximal muscle protein-synthesis rates throughout the day. Consuming CHO and protein during the early phases of recovery has been shown to positively affect subsequent exercise performance and could be of specific benefit for athletes involved in multiple training or competition sessions on the same or consecutive days.

Restricted access

Luc J. Martin, Jessi Wilson, M. Blair Evans and Kevin S. Spink

Although cliques are often referenced in sporting circles, they have received little attention in the group dynamics literature. This is surprising given their potential influence on group-related processes that could ultimately influence team functioning (e.g., Carron & Eys, 2012). The present study examined competitive athletes’ perceptions of cliques using semistructured interviews with 18 (nine female, nine male) intercollegiate athletes (Mage = 20.9, SD = 1.6) from nine sport teams. Athletes described the formation of cliques as an inevitable and variable process that was influenced by a number of antecedents (e.g., age/tenure, proximity, similarity) and ultimately shaped individual and group outcomes such as isolation, performance, and sport adherence. Further, athletes described positive consequences that emerged when existing cliques exhibited more inclusive behaviors and advanced some areas of focus for the management of cliques within sport teams. Results are discussed from both theoretical and practical perspectives.

Restricted access

Jorn Trommelen, Milou Beelen, Marjan Mullers, Martin J. Gibala, Luc J.C. van Loon and Naomi M. Cermak

Carbohydrate mouth rinsing during exercise has been suggested to enhance performance of short (45–60 min) bouts of high-intensity (>75% VO2peak) exercise. Recent studies indicate that this performance enhancing effect may be dependent on the prandial state of the athlete. The purpose of this study was to define the impact of a carbohydrate mouth rinse on ~1-hr time trial performance in both the fasted and fed states. Using a double-blind, crossover design, 14 trained male cyclists (27 ± 6 years; 5.0 ± 0.5 W·kg−1) were selected to perform 4 time trials of ~1 hr (1,032 ± 127 kJ) on a cycle ergometer while rinsing their mouths with a 6.4% sucrose solution (SUC) or a noncaloric sweetened placebo (PLA) for 5 s at the start and at every 12.5% of their set amount of work completed. Two trials were performed in an overnight fasted state and two trials were performed 2 h after consuming a standardized breakfast. Performance time did not differ between any of the trials (fasted-PLA: 68.6 ± 7.2; fasted-SUC: 69.6 ± 7.5; fed-PLA: 67.6 ± 6.6; and fed-SUC: 69.0 ± 6.3 min; Prandial State × Mouth Rinse Solution p = .839; main effect prandial state p = .095; main effect mouth rinse solution p = .277). In line, mean power output and heart rate during exercise did not differ between trials. In conclusion, a sucrose mouth rinse does not improve ~1-hr time trial performance in well-trained cyclists when performed in either the fasted or the fed state.

Restricted access

Naomi M. Cermak, Peter Res, Rudi Stinkens, Jon O. Lundberg, Martin J. Gibala and Luc J.C. van Loon


Dietary nitrate supplementation has received much attention in the literature due to its proposed ergogenic properties. Recently, the ingestion of a single bolus of nitrate-rich beetroot juice (500 ml, ~6.2 mmol NO3 ) was reported to improve subsequent time-trial performance. However, this large volume of ingested beetroot juice does not represent a realistic dietary strategy for athletes to follow in a practical, performancebased setting. Therefore, we investigated the impact of ingesting a single bolus of concentrated nitrate-rich beetroot juice (140 ml, ~8.7 mmol NO3 ) on subsequent 1-hr time-trial performance in well-trained cyclists.


Using a double-blind, repeated-measures crossover design (1-wk washout period), 20 trained male cyclists (26 ± 1 yr, VO2peak 60 ± 1 ml · kg−1 · min−1, Wmax 398 ± 7.7 W) ingested 140 ml of concentrated beetroot juice (8.7 mmol NO3 ; BEET) or a placebo (nitrate-depleted beetroot juice; PLAC) with breakfast 2.5 hr before an ~1-hr cycling time trial (1,073 ± 21 kJ). Resting blood samples were collected every 30 min after BEET or PLAC ingestion and immediately after the time trial.


Plasma nitrite concentration was higher in BEET than PLAC before the onset of the time trial (532 ± 32 vs. 271 ± 13 nM, respectively; p < .001), but subsequent time-trial performance (65.5 ± 1.1 vs. 65 ± 1.1 s), power output (275 ± 7 vs. 278 ± 7 W), and heart rate (170 ± 2 vs. 170 ± 2 beats/min) did not differ between BEET and PLAC treatments (all p > .05).


Ingestion of a single bolus of concentrated (140 ml) beetroot juice (8.7 mmol NO3 ) does not improve subsequent 1-hr time-trial performance in well-trained cyclists.

Restricted access

Mark Eys, M. Blair Evans, Luc J. Martin, Jeannine Ohlert, Svenja A. Wolf, Michael Van Bussel and Charlotte Steins

A previous meta-analysis examining the relationship between cohesion and performance (Carron, Colman, Wheeler, & Stevens, 2002) revealed that this relationship was significantly stronger for female teams as compared with male teams. The purpose of the current study was to explore perceptions of the cohesion-performance relationship by coaches who have led teams of both genders. Semistructured interviews were employed with Canadian and German coaches with previous experience leading both male and female sport teams. The information obtained through the interviews yielded a number of categories pertaining to potential similarities and differences within female and male sport teams including: (a) the nature of cohesion (e.g., direction of the cohesion-performance relationship), (b) antecedents of cohesion (e.g., approaches to conflict), and (c) the management of cohesion (e.g., developing social cohesion). Overall, the results offer testable propositions regarding gender differences and group involvement in a sport context as well as informing best practices such that teams can attain optimal performance.

Restricted access

Jenna B. Gillen, Jorn Trommelen, Floris C. Wardenaar, Naomi Y.J. Brinkmans, Joline J. Versteegen, Kristin L. Jonvik, Christoph Kapp, Jeanne de Vries, Joost J.G.C. van den Borne, Martin J. Gibala and Luc J.C. van Loon

Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific proteincontaining food sources and the distribution of protein throughout the day are relevant for optimizing protein intake in athletes. In the present study, we examined the daily intake and distribution of various proteincontaining food sources in a large cohort of strength, endurance and team-sport athletes. Well-trained male (n=327) and female (n=226) athletes completed multiple web-based 24-hr dietary recalls over a 2-4 wk period. Total energy intake, the contribution of animal- and plant-based proteins to daily protein intake, and protein intake at six eating moments were determined. Daily protein intake averaged 108±33 and 90±24 g in men and women, respectively, which corresponded to relative intakes of 1.5±0.4 and 1.4±0.4 g/kg. Dietary protein intake was correlated with total energy intake in strength (r=0.71, p <.001), endurance (r=0.79, p <.001) and team-sport (r=0.77, p <.001) athletes. Animal and plant-based sources of protein intake was 57% and 43%, respectively. The distribution of protein intake was 19% (19±8 g) at breakfast, 24% (25±13 g) at lunch and 38% (38±15 g) at dinner. Protein intake was below the recommended 20 g for 58% of athletes at breakfast, 36% at lunch and 8% at dinner. In summary, this survey of athletes revealed they habitually consume > 1.2 g protein/kg/d, but the distribution throughout the day may be suboptimal to maximize the skeletal muscle adaptive response to training.