Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Maxime Buyckx x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Caffeinated Sports Drink: Ergogenic Effects and Possible Mechanisms

Kirk J. Cureton, Gordon L. Warren, Mindy L. Millard-Stafford, Jonathan E. Wingo, Jennifer Trilk, and Maxime Buyckx

This double-blind experiment examined the effects of a caffeinated sports drink during prolonged cycling in a warm environment. Sixteen highly trained cyclists completed 3 trials: placebo, carbohydrate-electrolyte sports drink (CES), and caffeinated sports drink (CES+CAF). Subjects cycled for 135 min, alternating between 60% and 75% VO2max every 15 min for the first 120 min, followed by a 15-min performance ride. Maximal voluntary (MVC) and electrically evoked contractile properties of the knee extensors were measured before and after cycling. Work completed during the performance ride was 15–23% greater for CES+CAF than for the other beverages. Ratings of perceived exertion were lower with CES+CAF than with placebo and CES. After cycling, the MVC strength loss was two-thirds less for CES+CAF than for the other beverages (5% vs. 15%). Data from the interpolated-twitch technique indicated that attenuated strength loss with CES+CAF was explained by reduced intrinsic muscle fatigue.

Restricted access

Hydration during Exercise in Warm, Humid Conditions: Effect of a Caffeinated Sports Drink

Mindy L. Millard-Stafford, Kirk J. Cureton, Jonathan E. Wingo, Jennifer Trilk, Gordon L. Warren, and Maxime Buyckx

Caffeine is regarded as a diuretic despite evidence that hydration is not impaired with habitual ingestion. The purpose of this study was to determine whether a caffeinated sports drink impairs fluid delivery and hydration during exercise in warm, humid conditions (28.5 °C, 60% relative humidity). Sixteen cyclists completed 3 trials: placebo (P), carbohydrate-electrolyte (CE), and caffeinated (195 mg/L) sports drink (CAF+CE). Subjects cycled for 120 min at 60–75%VO2max followed by 15 min of maximal-effort cycling. Heart rate and rectal temperature were similar until the final 15 min, when these responses and exercise intensity were higher with CAF+CE than with CE and P. Sweat rate, urine output, plasma-volume losses, serum electrolytes, and blood deuterium-oxide accumulation were not different. Serum osmolality was higher with CAF+CE vs. P but not CE. The authors conclude that CAF+CE appears as rapidly in blood as CE and maintains hydration and sustains cardiovascular and thermoregulatory function as well as CE during exercise in a warm, humid environment.

Restricted access

Effect of Various Carbohydrate-Electrolyte Fluids on Cycling Performance and Maximal Voluntary Contraction

Matthew S. Ganio, Jennifer F. Klau, Elaine C. Lee, Susan W. Yeargin, Brendon P. McDermott, Maxime Buyckx, Carl M. Maresh, and Lawrence E. Armstrong

The purpose of this study was to compare the effects of a carbohydrate-electrolyte plus caffeine, carnitine, taurine, and B vitamins solution (CE+) and a carbohydrate-electrolyte-only solution (CE) vs. a placebo solution (PLA) on cycling performance and maximal voluntary contraction (MVC). In a randomized, double-blind, crossover, repeated-measures design, 14 male cyclists (M ± SD age 27 ± 6 yr, VO2max 60.4 ± 6.8 ml · kg−1 · min−1) cycled for 120 min submaximally (alternating 61% ± 5% and 75% ± 5% VO2max) and then completed a 15-min performance trial (PT). Participants ingested CE+, CE, or PLA before (6 ml/kg) and every 15 min during exercise (3 ml/kg). MVC was measured as a single-leg isometric extension (70° knee flexion) before (pre) and after (post) exercise. Rating of perceived exertion (RPE) was measured throughout. Total work accumulated (KJ) during PT was greater (p < .05) in CE+ (233 ± 34) than PLA (205 ± 52) but not in CE (225 ± 39) vs. PLA. MVC (N) declined (p < .001) from pre to post in PLA (988 ± 213 to 851 ± 191) and CE (970 ± 172 to 870 ± 163) but not in CE+ (953 ± 171 to 904 ± 208). At Minutes 60, 90, 105, and 120 RPE was lower in CE+ (14 ± 2, 14 ± 2, 12 ± 1, 15 ± 2) than in PLA (14 ± 2, 15 ± 2, 14 ± 2, 16 ± 2; p < .001). CE+ resulted in greater total work than PLA. CE+, but not PLA or CE, attenuated pre-to-post MVC declines. Performance increases during CE+ may have been influenced by lower RPE and greater preservation of leg strength during exercise in part as a result of the hypothesized effects of CE+ on the central nervous system and skeletal muscle.