Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Mohsen Shafizadeh x
  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Mohsen Shafizadeh, Nicola Theis, and Keith Davids

The aim of this study was to examine strategies to absorb impact shock during RaceRunning in participants with neurological motor disorders. For this purpose, 8 RaceRunning athletes (4 male and 4 female) voluntarily took part in the study. Each participant performed a series of 100-m sprints with a RaceRunning bike. Acceleration of the tibia and head was measured with 2 inertial measurement units and used to calculate foot-impact shock measures. Results showed that RaceRunning pattern was characterized by a lack of impact peak in foot–ground contact time and the existence of an active peak after foot contact. Due to the ergonomic properties of the RaceRunning bike, shock is attenuated throughout the stance phase. In conclusion, the results revealed that RaceRunning athletes with neurological motor disorders are capable of absorbing impact shock during assisted RaceRunning using a strategy that mimics runners without disabilities.

Restricted access

Marzie Balali, Shahab Parvinpour, and Mohsen Shafizadeh

The ability to coordinate different body parts under different constraints that are imposed by organism, environment, and tasks during motor development might be different in children. The aim of this study was to examine whether children with different motor development levels are different with regard to multijoint coordination during two-hand catching. Eighty-four children (age: 6.05 ±0.67 years) who were assessed on object control skills were recruited voluntarily. The biomechanical model was defined from 20 movements of seven segments (shoulders, elbows, wrists, and torso), and the principal component analysis was used to quantify the multijoint coordination and kinematic synergies during catching. The results showed that the redundancy of joints in two-hand catching is controlled by three kinematic synergies that defined the majority of the variance. The participants who were grouped based on their development levels did not show differences in the number and strength of synergies; however, they were different in the utilization of the kinematic synergies for successful catching. In conclusion, the number and the strength of the kinematic synergies during two-hand catching are not affected by the developmental levels and are related to the nature of the task.