Purpose: To determine if small-sided games (SSGs) could be designed to target specific task loads using the National Aeronautics and Space Administration task load index as well as reporting the influence of the physical and technical demands. Methods: Using a within-session, repeated-measures design, 26 junior rugby league players completed 5 SSGs focused on physical, technical, temporal, cognitive, and frustration task loads. National Aeronautics and Space Administration task load index responses were evaluated after each game; the physical demands were recorded using microtechnology; and skill involvement recorded using video analysis. Results: In each SSG, the task load emphasized (eg, physical load/physical game) emerged with a higher score than the other loads and SSGs. The physical demands were lowest during the physical game (effect size = −3.11 to 3.50) and elicited greater defensive involvements (effect size = 0.12 to 3.19). The highest physical demands and attacking involvements were observed during the temporal game. Lower intensity activities were generally negatively associated with physical, performance, temporal, and total load (η 2 = −.07 to −.43) but positively associated with technical, effort, cognitive, and frustration (η 2 = .01 to .33). Distance covered in total and at higher speeds was positively associated with physical, effort, performance, total load (η 2 = .18 to .65), and negatively associated with technical, frustration, and cognitive load (η 2 = −.10 to −.36). Attacking and defensive involvements generally increased the respective task loads (η 2 = .03 to .41). Conclusion: Coaches and sport scientists can design SSGs specifically targeted at subjective task loads in a sport-specific manner and through manipulation of the physical and technical demands.
Search Results
Influence of Game Design, Physical Demands, and Skill Involvement on the Subjective Task Load Associated With Various Small-Sided Games Among Elite Junior Rugby League Players
Nick Dobbin, Anthony Atherton, and Colin Hill
Sex-Related Changes in Physical Performance, Well-Being, and Neuromuscular Function of Elite Touch Players During a 4-Day International Tournament
Nick Dobbin, Cari Thorpe, Jamie Highton, and Craig Twist
Purpose: To examine the within- and between-sexes physical performance, well-being, and neuromuscular function responses across a 4-day international touch rugby (Touch) tournament. Methods: Twenty-one males and 20 females completed measures of well-being (fatigue, soreness, sleep, mood, and stress) and neuromuscular function (countermovement jump height, peak power output, and peak force) during a 4-day tournament with internal, external, and perceptual loads recorded for all matches. Results: Relative and absolute total, low-intensity (females), and high-intensity distance were lower on day 3 (males and females) (effect size [ES] = −0.37 to −0.71) compared with day 1. Mean heart rate was possibly to most likely lower during the tournament (except day 2 males; ES = −0.36 to −0.74), whereas rating of perceived exertion-training load was consistently higher in females (ES = 0.02 to 0.83). The change in mean fatigue, soreness, and overall well-being was unclear to most likely lower (ES = −0.33 to −1.90) across the tournament for both sexes, with greater perceived fatigue and soreness in females on days 3 to 4 (ES = 0.39 to 0.78). Jump height and peak power output were possibly to most likely lower across days 2 to 4 (ES = −0.30 to −0.84), with greater reductions in females (ES = 0.21 to 0.66). Well-being, countermovement jump height, and peak force were associated with changes in external, internal, and perceptual measures of load across the tournament (η 2 = −.37 to .39). Conclusions: Elite Touch players experience reductions in well-being, neuromuscular function, and running performance across a 4-day tournament, with notable differences in fatigue and running between males and females, suggesting that sex-specific monitoring and intervention strategies are necessary.
Criterion and Construct Validity of an Isometric Midthigh-Pull Dynamometer for Assessing Whole-Body Strength in Professional Rugby League Players
Nick Dobbin, Richard Hunwicks, Ben Jones, Kevin Till, Jamie Highton, and Craig Twist
Purpose: To examine the criterion and construct validity of an isometric midthigh-pull dynamometer to assess whole-body strength in professional rugby league players. Methods: Fifty-six male rugby league players (33 senior and 23 youth players) performed 4 isometric midthigh-pull efforts (ie, 2 on the dynamometer and 2 on the force platform) in a randomized and counterbalanced order. Results: Isometric peak force was underestimated (P < .05) using the dynamometer compared with the force platform (95% LoA: −213.5 ± 342.6 N). Linear regression showed that peak force derived from the dynamometer explained 85% (adjusted R 2 = .85, SEE = 173 N) of the variance in the dependent variable, with the following prediction equation derived: predicted peak force = [1.046 × dynamometer peak force] + 117.594. Cross-validation revealed a nonsignificant bias (P > .05) between the predicted and peak force from the force platform and an adjusted R 2 (79.6%) that represented shrinkage of 0.4% relative to the cross-validation model (80%). Peak force was greater for the senior than the youth professionals using the dynamometer (2261.2 ± 222 cf 1725.1 ± 298.0 N, respectively; P < .05). Conclusion: The isometric midthigh pull assessed using a dynamometer underestimates criterion peak force but is capable of distinguishing muscle-function characteristics between professional rugby league players of different standards.