A comprehensive recent study by Trommelen et al. demonstrated that muscle tissue exhibits a greater capacity to incorporate exogenous exogenous protein-derived amino acids into bound muscle protein than was previously appreciated, at least when measured in “anabolically sensitive,” recreationally active (but not resistance-trained), young men following resistance exercise. Moreover, this study demonstrated that the duration of the postprandial period is modulated by the dose of ingested protein contained within a meal, that is, the postexercise muscle protein synthesis response to protein ingestion was more prolonged in 100PRO than 25PRO. Both observations represent important scientific advances in the field of protein metabolism. However, we respectfully caution that the practical implications of these findings may have been misinterpreted, at least in terms of dismissing the concept of protein meal distribution as an important factor in optimizing muscle tissue anabolism and/or metabolic health. Moreover, based on emerging evidence, this idea that the anabolic response to protein ingestion has no upper limit does not appear to translate to resistance-trained young women.
Search Results
The Anabolic Response to Protein Ingestion During Recovery From Exercise Has No Upper Limit in Magnitude and Duration In Vivo in Humans: A Commentary
Oliver C. Witard and Samuel Mettler
Celebrating the Professional Life of Professor Kevin D. Tipton (1961–2022)
Oliver C. Witard, Arny A. Ferrando, and Stuart M. Phillips
This invited editorial celebrates the distinguished professional life of Professor Kevin D. Tipton, who sadly passed away on January 9, 2022. Professor Tipton made an outstanding contribution to the scientific field of sport nutrition and exercise metabolism over an exceptional 30-year career. He dedicated his academic career to understanding the response of muscle protein metabolism to exercise and nutrition. The impact of his work is far-reaching with application to athletes in terms of promoting training adaptation, recovery, and performance, alongside clinical implications for injury management and healthy aging. Notable scientific contributions included the first in vivo human study to demonstrate the role of orally ingested essential amino acids in stimulating muscle protein synthesis during acute post-exercise recovery. This finding laid the foundation for future studies to interrogate the response of muscle protein synthesis to the ingestion of different protein types. Professor Tipton’s work also included investigating the maximally effective dose and timing (regarding exercise) of ingested protein for the stimulation of muscle protein synthesis. Kevin will be remembered fondly by academics, applied scientists, and students across the sport nutrition and exercise metabolism community as a leading researcher in the field, a critical thinker, and an inspirational teacher. His mission was to educate the next generation of exercise scientists by sharing his distinct wealth of knowledge accrued over three decades. Above all else, Kevin was kind, generous (with his time and knowledge), honest, and incredibly social. He was a unique character and will be greatly missed among our community but certainly never forgotten.
Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training
Oliver C. Witard, Laurent Bannock, and Kevin D. Tipton
The acute response of muscle protein synthesis (MPS) to resistance exercise and nutrition is often used to inform recommendations for exercise programming and dietary interventions, particularly protein nutrition, to support and enhance muscle growth with training. Those recommendations are worthwhile only if there is a predictive relationship between the acute response of MPS and subsequent muscle hypertrophy during resistance exercise training. The metabolic basis for muscle hypertrophy is the dynamic balance between the synthesis and degradation of myofibrillar proteins in muscle. There is ample evidence that the process of MPS is much more responsive to exercise and nutrition interventions than muscle protein breakdown. Thus, it is intuitively satisfying to translate the acute changes in MPS to muscle hypertrophy with training over a longer time frame. Our aim is to examine and critically evaluate the strength and nature of this relationship. Moreover, we examine the methodological and physiological factors related to measurement of MPS and changes in muscle hypertrophy that contribute to uncertainty regarding this relationship. Finally, we attempt to offer recommendations for practical and contextually relevant application of the information available from studies of the acute response of MPS to optimize muscle hypertrophy with training.
Nutritional Status and Daytime Pattern of Protein Intake on Match, Post-Match, Rest and Training Days in Senior Professional and Youth Elite Soccer Players
Armand E.O. Bettonviel, Naomi Y.J. Brinkmans, Kris Russcher, Floris C. Wardenaar, and Oliver C. Witard
The nutritional status of elite soccer players across match, postmatch, training and rest days has not been defined. Recent evidence suggests the pattern of dietary protein intake impacts the daytime turnover of muscle proteins and, as such, influences muscle recovery. We assessed the nutritional status and daytime pattern of protein intake in senior professional and elite youth soccer players and compared findings against published recommendations. Fourteen senior professional (SP) and 15 youth elite (YP) soccer players from the Dutch premier division completed nutritional assessments using a 24-hr web-based recall method. Recall days consisted of a match, postmatch, rest, and training day. Daily energy intake over the 4-day period was similar between SP (2988 ± 583 kcal/day) and YP (2938 ± 465 kcal/day; p = .800). Carbohydrate intake over the combined 4-day period was lower in SP (4.7 ± 0.7 g·kg-1 BM·day-1) vs. YP (6.0 ± 1.5 g·kg-1 BM·day-1, p = .006) and SP failed to meet recommended carbohydrate intakes on match and training days. Conversely, recommended protein intakes were met for SP (1.9 ± 0.3 g·kg-1 BM·day-1) and YP (1.7 ± 0.4 g·kg-1 BM·day-1), with no differences between groups (p = .286). Accordingly, both groups met or exceeded recommended daily protein intakes on individual match, postmatch, rest and training days. A similar “balanced” daytime pattern of protein intake was observed in SP and YP. To conclude, SP increased protein intake on match and training days to a greater extent than YP, however at the expense of carbohydrate intake. The daytime distribution of protein intake for YP and SP aligned with current recommendations of a balanced protein meal pattern.
Co-Ingestion of Branched-Chain Amino Acids and Carbohydrate Stimulates Myofibrillar Protein Synthesis Following Resistance Exercise in Trained Young Men
Sarah R. Jackman, Gareth A. Wallis, Jinglei Yu, Andrew Philp, Keith Baar, Kevin D. Tipton, and Oliver C. Witard
Branched-chain amino acids (BCAA) and carbohydrate (CHO) are commonly recommended postexercise supplements. However, no study has examined the interaction of CHO and BCAA ingestion on myofibrillar protein synthesis (MyoPS) rates following exercise. We aimed to determine the response of MyoPS to the co-ingestion of BCAA and CHO following an acute bout of resistance exercise. Ten resistance-trained young men completed two trials in counterbalanced order, ingesting isocaloric drinks containing either 30.6-g CHO plus 5.6-g BCAA (B + C) or 34.7-g CHO alone following a bout of unilateral, leg resistance exercise. MyoPS was measured postexercise with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre- and 4 hr postdrink ingestion. Blood samples were collected at time points before and after drink ingestion. Serum insulin concentrations increased to a similar extent in both trials (p > .05), peaking at 30 min postdrink ingestion. Plasma leucine (514 ± 34 nmol/L), isoleucine (282 ± 23 nmol/L), and valine (687 ± 33 nmol/L) concentrations peaked at 0.5 hr postdrink in B + C and remained elevated for 3 hr during exercise recovery. MyoPS was ∼15% greater (95% confidence interval [−0.002, 0.028], p = .039, Cohen’s d = 0.63) in B + C (0.128%/hr ± 0.011%/hr) than CHO alone (0.115%/hr ± 0.011%/hr) over the 4 hr postexercise period. Co-ingestion of BCAA and CHO augments the acute response of MyoPS to resistance exercise in trained young males.
n-3 Fatty Acid Supplementation During 4 Weeks of Training Leads to Improved Anaerobic Endurance Capacity, but not Maximal Strength, Speed, or Power in Soccer Players
Leyre Gravina, Frankie F. Brown, Lee Alexander, James Dick, Gordon Bell, Oliver C. Witard, and Stuart D.R. Galloway
Omega-3 fatty acid (n-3 FA) supplementation could promote adaptation to soccer-specific training. We examined the impact of a 4-week period of n-3 FA supplementation during training on adaptations in 1RM knee extensor strength, 20-m sprint speed, vertical jump power, and anaerobic endurance capacity (Yo-Yo test) in competitive soccer players. Twenty six soccer players were randomly assigned to one of two groups: n-3 FA supplementation (n-3 FA; n = 13) or placebo (n = 13). Both groups performed two experimental trial days. Assessments of physical function and respiratory function were conducted pre (PRE) and post (POST) supplementation. Training session intensity, competitive games and nutritional intake were monitored during the 4-week period. No differences were observed in respiratory measurements (FEV1, FVC) between groups. No main effect of treatment was observed for 1RM knee extensor strength, explosive leg power, or 20 m sprint performance, but strength improved as a result of the training period in both groups (p < .05). Yo-Yo test distance improved with training in the n-3 FA group only (p < .01). The mean difference (95% CI) in Yo-Yo test distance completed from PRE to POST was 203 (66–340) m for n-3 FA, and 62 (-94–217) m for placebo, with a moderate effect size (Cohen’s d of 0.52). We conclude that 4 weeks of n-3 FA supplementation does not improve strength, power or speed assessments in competitive soccer players. However, the increase in anaerobic endurance capacity evident only in the n-3 FA treatment group suggests an interaction that requires further study.
Adding Fish Oil to Whey Protein, Leucine, and Carbohydrate Over a Six-Week Supplementation Period Attenuates Muscle Soreness Following Eccentric Exercise in Competitive Soccer Players
Jordan D. Philpott, Chris Donnelly, Ian H. Walshe, Elizabeth E. MacKinley, James Dick, Stuart D.R. Galloway, Kevin D. Tipton, and Oliver C. Witard
Soccer players often experience eccentric exercise-induced muscle damage given the physical demands of soccer match-play. Since long chain n-3 polyunsaturated fatty acids (n-3PUFA) enhance muscle sensitivity to protein supplementation, dietary supplementation with a combination of fish oil–derived n-3PUFA, protein, and carbohydrate may promote exercise recovery. This study examined the influence of adding n-3PUFA to a whey protein, leucine, and carbohydrate containing beverage over a six-week supplementation period on physiological markers of recovery measured over three days following eccentric exercise. Competitive soccer players were assigned to one of three conditions (2 × 200 mL): a fish oil supplement beverage (FO; n = 10) that contained n-3PUFA (1100 mg DHA/EPA—approximately 550 mg DHA, 550 mg EPA), whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); a protein supplement beverage (PRO; n = 10) that contained whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); and a carbohydrate supplement beverage (CHO; n = 10) that contained carbohydrate (24 g). Eccentric exercise consisted of unilateral knee extension/flexion contractions on both legs separately. Maximal force production was impaired by 22% during the 72-hour recovery period following eccentric exercise (p < 0.05). Muscle soreness, expressed as area under the curve (AUC) during 72-hour recovery, was less in FO (1948 ± 1091 mm × 72 h) than PRO (4640 ± 2654 mm × 72 h, p < 0.05) and CHO (4495 ± 1853 mm × 72 h, p = 0.10). Blood concentrations of creatine kinase, expressed as AUC, were ~60% lower in FO compared to CHO (p < 0.05) and tended to be lower (~39%, p = 0.07) than PRO. No differences in muscle function, soccer performance, or blood c-reactive protein concentrations were observed between groups. In conclusion, the addition of n-3PUFA to a beverage containing whey protein, leucine, and carbohydrate ameliorates the increase in muscle soreness and blood concentrations of creatine kinase following eccentric exercise in competitive soccer players.