Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Shannon David x
  • Physical Education and Coaching x
  • Sport and Exercise Science/Kinesiology x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Validation of a New Handheld Device for Measuring Resting Metabolic Rate and Oxygen Consumption in Children

David C. Nieman, Melanie D. Austin, Shannon M. Chilcote, and Laura Benezra

The purpose of this study was to assess the validity and reliability of the MedGem™ device to measure resting metabolic rate (RMR) in children. Subjects included 59 children (29 boys, 30 girls; mean age, 11.0 ± 0.2 y). Subjects were given 4 RMR tests during 1 test session, cconsisting of 2 Douglas bag and 2 MedGem tests, in random counterbalanced order. No significant differences were found between Douglas bag and MedGem systems for oxygen consumption (209 ± 5 and 213 ± 5 mL/min, respectively, P = 0.106, r = 0.911, mean ± standard deviation absolute difference 3.72 ± 17.40 mL/min) or RMR (1460 ± 39 and 1477 ± 35 kcal/d, P = 0.286, r = 0.909, mean ± standard deviation absolute difference 17.4 ± 124 kcal/d). Standard error of estimates for oxygen consumption and RMR were 17.4 mL/min and 124 kcal/d, respectively. In conclusion, these data indicate that the MedGem is a reliable and valid system for measuring oxygen consumption and RMR in children.

Restricted access

The Influence of Habitual Exercise Training and Meal Form on Diet-Induced Thermogenesis in College-Age Men

Lance Ratcliff, Sareen S. Gropper, B. Douglas White, David M. Shannon, and Kevin W. Huggins

This study compared type of habitual exercise and meal form on diet-induced thermogenesis (DIT) in 29 men age 19–28 yr. Resting metabolic rate (RMR) and DIT response to solid-meal (bar) vs. liquid-meal (shake) ingestion were measured via indirect calorimetry; classifications were sedentary (n = 9), endurance trained (n = 11), or resistance trained (n = 9). Height, weight, and body composition (using bioelectrical impedance) were measured for each subject. Energy expenditure was determined before and every 30 min after meal consumption for 210 min. RMR was significantly (p = .045) higher in the endurance- and resistance-trained groups. However, when expressed per kilogram fat-free mass (FFM; relative RMR), differences were not significant. Both DIT (kcal/min) and relative DIT (kcal · min−1 · kg FFM−1) significantly increased with time (p < .0001) from RMR for each meal form. There was no significant exercise-group effect on DIT or relative DIT. There was a significant (p = .012) effect of meal form on DIT; shakes elicited a higher DIT. This significant difference was not found for relative DIT. There was a significant interaction between group and meal form for DIT (p = .008) and relative DIT (p < .0001). Shakes elicited a significantly greater DIT (p = .0002) and relative DIT (p = .0001) in the resistance-trained group. In the sedentary group, relative DIT from shakes was significantly lower than from bars (p = .019). In conclusion, habitual exercise appears to increase RMR, and meal form may impart changes in relative DIT depending on exercise status.