Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Sheng Li x
  • Athletic Training, Therapy, and Rehabilitation x
  • Journal of Applied Biomechanics x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Finger Coordination and Bilateral Deficit during Two-Hand Force Production Tasks Performed by Right-Handed Subjects

Sheng Li, Frederic Danion, Mark L. Latash, Zong-Ming Li, and Vladimir M. Zatsiorsky

One purpose of the present study was to compare indices of finger coordination during force production by the fingers of the right hand and of the left hand. The other purpose was to study the relation between the phenomena of force deficit during multifinger one-hand tasks and of bilateral force deficit during two-hand tasks. Thirteen healthy right-handed subjects performed maximal voluntary force production tasks with different finger combinations involving fingers of one hand or of both hands together. Fingers of the left hand demonstrated lower peak forces, higher indices of finger enslaving, and similar indices of force deficit. Significant bilateral effects during force production by fingers of both hands acting in parallel were seen only during tasks involving different fingers or finger groups in the two hands (asymmetrical tasks). The bilateral deficit effects were more pronounced in the hand whose fingers generated higher forces. These findings suggest a generalization of an earlier introduced principle of minimization of secondary moments. They also may be interpreted as suggesting that bilateral force deficit is task-specific and may reflect certain optimization principles.

Restricted access

Analysis of a Network for Finger Interaction during Two-Hand Multi-Finger Force Production Tasks

Simon R. Goodman, Mark L. Latash, Sheng Li, and Vladimir M. Zatsiorsky

This study involved an optimization, numerical analysis of a network for two-hand multi-finger force production, analogous in its structure to the double-representation mirror image (DoReMi) network suggested earlier based on neurophysiological data on cortical finger representations. The network accounts for phenomena of enslaving (unintended finger force production), force deficit (smaller force produced by a finger in multi-finger tasks as compared to its single-finger task), and bilateral deficit (smaller forces produced in two-hand tasks as compared to one-hand tasks). Matrices of connection weights were computed, and the results of optimization were compared to the experimental data on finger forces during one- and two-hand maximal force production (MVC) tasks. The network was able to reproduce the experimental data in two-hand experiments with high accuracy (average error was 1.2 N); it was also able to reproduce findings in one-hand multi-finger MVC tasks, which were not used during the optimization procedure, although with a somewhat higher error (2.8 N). Our analysis supports the feasibility of the DoReMi network. It suggests that within-a-hand force deficit and bilateral force deficit are phenomena of different origins whose effects add up. Is also supports a hypothesis that force deficit and enslaving have different neural origins.