Introduction: Maximal mean power output (MMP) is commonly used to describe the demands and performances of races in professional male cycling. In the female professional cyclist domain, however, there is limited knowledge regarding MMPs in races. Therefore, this study aimed to describe MMPs in female professional cycling races while investigating differences between TOP5 and NOT-TOP5 races. Methods: Race data (N = 1324) were collected from 14 professional female cyclists between 2013 and 2019. Races were categorized as TOP5 or NOT-TOP5. The MMPs were consequently determined over a range of different time frames (5 s to 60 min). To provide these MMPs with additional context, 2 factors were determined: when these MMPs were attained in a race (based on duration and kilojoules spent [kJspent·kg−1]) and these MMPs relative to the cyclist’s season’s best MMP (MMP%best). Results: Short-duration power outputs (≤1 min) were higher in TOP5 races compared with NOT-TOP5 races. In addition, the timing (both duration and kJspent·kg−1) of all MMPs was later and after more workload in the race in TOP5 compared with NOT-TOP5 races. In contrast, no difference in MMP%best was noted between TOP5 and NOT-TOP5 races. Conclusions: TOP5 races in female cycling are presented with higher short-duration MMPs (≤1 min) when compared with NOT-TOP5 races, and cyclists were able to reach a higher percentage of their seasonal best MMP when they were able to finish TOP5. In addition, these MMPs are performed later and after more kJspent·kg−1 in TOP5 versus NOT-TOP5 races, which confirms the importance of “fatigue resistance” in professional (female) cycling.
Search Results
You are looking at 1 - 10 of 16 items for :
- Author: Teun van Erp x
- International Journal of Sports Physiology and Performance x
- Refine by Access: All Content x
Performance Characteristics of TOP5 Versus NOT-TOP5 Races in Female Professional Cycling
Teun van Erp and Robert P. Lamberts
The Physical Demands and Power Profile of Professional Men’s Cycling Races: An Updated Review
Dajo Sanders and Teun van Erp
Background: A variety of intensity, load, and performance measures (eg, “power profile”) have been used to characterize the demands of professional cycling races with differing stage types. An increased understanding of the characteristics of these races could provide valuable insight for practitioners toward the design of training strategies to optimally prepare for these demands. However, current reviews within this area are outdated and do not include a recent influx of new articles describing the demands of professional cycling races. Purpose: To provide an updated overview of the intensity and load demands and power profile of professional cycling races. Typically adopted measures are introduced and their results summarized. Conclusion: There is a clear trend in the research that stage type significantly influences the intensity, load, and power profile of races with more elevation gain typically resulting in a higher intensity and load and longer-duration power outputs (ie, >10 min). Flat and semimountainous stages are characterized by higher maximal mean power outputs over shorter durations (ie, <2 min). Furthermore, single-day races tend to have a higher (daily) intensity and load compared with stages within multiday races. Nevertheless, while the presented mean (grouped) data provide some indications on the demands of these races and differences between varying competition elements, a limited amount of research is available describing the “race-winning efforts” in these races, and this is proposed as an important area for future research. Finally, practitioners should consider the limitations of each metric individually, and a multivariable approach to analyzing races is advocated.
Monitoring Progress in Professional Cycling: From Submaximal Testing to the Use of Field Data
Robert P. Lamberts and Teun van Erp
Power Profile of Top 5 Results in World Tour Cycling Races
Teun van Erp, Robert P. Lamberts, and Dajo Sanders
Purpose: This study evaluated the power profile of a top 5 result achieved in World Tour cycling races of varying types, namely: flat sprint finish, semi-mountain race with a sprint finish, semi-mountain race with uphill finish, and mountain races (MT). Methods: Power output data from 33 professional cyclists were collected between 2012 and 2019. This large data set was filtered so that it only included top 5 finishes in World Tour races (18 participants and 177 races). Each of these top 5 finishes were subsequently classified as flat sprint finish, semi-mountain race with uphill finish, semi-mountain race with a sprint finish, and MT based on set criteria. Maximal mean power output (MMP) for a wide range of durations (5 s to 60 min), expressed in both absolute (in Watts) and relative terms (in Watts per kilogram), were assessed for each race type. Result: Short-duration power outputs (<60 s), both in relative and in absolute terms, are of higher importance to be successful in flat sprint finish and semi-mountain race with a sprint finish. Longer-duration power outputs (≥3 min) are of higher importance to be successful in semi-mountain race with uphill finish and MT. In addition, relative power outputs of >10 minutes seem to be a key determining factor for success in MT. These race-type specific MMPs of importance (ie, short-duration MMPs for sprint finishes, longer-duration MMPs for races with more elevation gain) are performed at a wide range (80%–97%) of the cyclist’s personal best MMP. Conclusions: This study shows that the relative importance of certain points on the power–duration spectrum varies with different race types and provides insight into benchmarks for achieving a result in a World Tour cycling race.
Demands of the Tour de France: A Case Study of a World-Class Sprinter (Part I)
Teun van Erp, Marcel Kittel, and Robert P. Lamberts
Purpose: To describe the intensity, load, and performance characteristics of a world-class sprinter competing in the Tour de France (TdF). Method: Power output (PO) data were collected from 4 editions of the TdF (2013, 2014, 2016, and 2017) and analyzed. Load, intensity distribution in 5 PO zones, and the maximal mean PO for multiple durations were quantified. Stages were divided in accordance with the 4 different editions of the TdF, as well as the 4 different stage types, that is, flat (FLAT), semimountainous (SMT), mountain (MT), and (team) time trials. In addition, based on their location within the stage, mountain passes were further classified as BEGINNING, MIDDLE, or END of the stage. Results: No differences in load, intensity, and performance characteristics were found when the 4 editions of the TdF were compared. Time trials were associated with higher intensities but a lower load compared to the other stage types. MT showed higher load and intensity values compared to FLAT and SMT stages. FLAT stages were higher in short maximal mean PO (≤1 min), whereas MT stages showed higher longer endurance maximal mean PO values (≥20 min). In addition, mountain passes situated at the BEGINNING of the stage were completed with a higher PO, cadence, and speed compared with mountain passes situated at the END. Conclusions: A world-class sprinter sustains a higher load and spends more time in the high-intensity zones when competing in the TdF than previously reported values suggested. To finish the MT stages as efficiently as possible, sprinters adopt a reverse pacing strategy.
Sprint Tactics in the Tour de France: A Case Study of a World-Class Sprinter (Part II)
Teun van Erp, Marcel Kittel, and Robert P. Lamberts
Purpose: To describe the performance and tactical sprint characteristics of a world-class sprinter competing in the Tour de France. In addition, differences in the sprint tactics of 2 teams and won versus lost sprints are highlighted. Method: Power output (PO) and video footage of 21 sprints were analyzed. Position in the peloton and number of teammates supporting the sprinter at different times before the finish line together with PO for different time intervals were determined. Sprints were classified as team Shimano (2013–2014) and team Quick-step (2016–2017), as well as won or lost. Results: The sprinter was highly successful, winning 14 out of the 21 sprints. At time intervals 10 to 5, 3 to 2, and 1.5 to 1 minute, POs were significantly lower in team Quick-step compared with team Shimano, but the sprinter was positioned further away from the front at 10, 2, 1.5, 1, and 0.5 minutes at team Quick-step compared with team Shimano. The PO was higher at time interval 0.5 to 0.25 minutes before the finish line with team Quick-step when compared with team Shimano. The position of the sprinter in the peloton in lost sprints was further away from the front at 0.5 minutes before the finish compared with won sprints, while no differences were noted for PO and the number of teammates between won and lost sprints. Conclusions: Differences in sprint tactics (Shimano vs Quick-step) influence the PO and position in the peloton during the sprint preparation. In addition, the position at 0.5 minutes before the finish line influences the outcome (won or lost) of the sprint.
Racing Demands for Winning a Grand Tour: Differences and Similarities Between a Female and a Male Winner
Robert P. Lamberts, Annemiek van Vleuten, Tom Dumoulin, Louis Delahaije, and Teun van Erp
Purpose: To describe and compare the race characteristics, demands, and durability profile of a male and a female Grand Tour winner. Methods: Overall and stage-type-specific (ie, time trials, flat, semimountainous, and mountain) demands and race characteristics during 2 Grand Tours were determined and compared between the female and male cyclists. In addition, relative power output distribution and pacing, percentage of functional threshold power (FTP), and changes in maximal mean power outputs (MMPs) with increasing levels of kilojoules burned were determined. Results: Although many differences were found between course and absolute racing demands between the male (FTP: 413 W; critical power: 417 W) and female (FTP: 297 W; critical power: 297 W) cyclists, similar power distributions and pacing strategies were found if data were expressed relatively. However, the female cyclist rode a higher percentage of her FTP during the first 2 quarters of flat stages (14.7%–15.1%) and the last quarter of mountain stages (9.8%) than the male cyclist. Decrements in MMPs were only observed after burning 30 kJ·kg−1 in the female and 45 kJ·kg−1 in the male Grand Tour winner. Conclusions: Both the male and female Grand Tour winners produced very high 20- to 60-minute MMPs, whereas decrements in MMPs were only observed after having burned 75% (female) and 80% (male) of total kilojoules burned during a stage. These are the latest and lowest in MMPs reported in the scientific literature and highlight the importance of durability in combination with excellent climbing and time-trial skills, which are needed to be able to win a Grand Tour.
The IJSPP Twitter Account: Our Secondary Step to Narrow the Gap Between Sport Science and Sport Practice
Jos J de Koning, Teun van Erp, Rob Lamberts, Stephen Cheung, and Dionne Noordhof
The Evolution of Applied Research on Sports Physiology and Performance: An Appreciation to the Athletes and Teams for Sharing Their Data
Robert P. Lamberts, Teun van Erp, Dajo Sanders, Karen E. Welman, and Øyvind Sandbakk
Various Workload Models and the Preseason Are Associated With Injuries in Professional Female Cyclists
Teun van Erp, Taco van der Hoorn, Marco J.M. Hoozemans, Carl Foster, and Jos J. de Koning
Purpose: To determine if workload and seasonal periods (preseason vs in season) are associated with the incidence of injuries and illnesses in female professional cyclists. Methods: Session rating of perceived exertion was used to quantify internal workload and was collected from 15 professional female cyclists, from 33 athlete seasons. One week (acute) workload, 4 weeks (chronic) workload, and 3 acute:chronic workload models were analyzed. Two workload models are based on moving averages of the ratios, the acute:chronic workload ratio (ACWR), and the ACWR uncoupled (ACWRuncoup). The difference between both is the chronic load; in ACWR, the acute load is part of the chronic load, and in ACWRuncoup, the acute and chronic load are uncoupled. The third workload model is based on exponentially weighted moving averages of the ratios. In addition, the athlete season is divided into the preseason and in season. Results: Generalized estimating equations analysis was used to assess the associations between the workload ratios and the occurrence of injuries and illnesses. High values of acute workload (P = .048), ACWR (P = .02), ACWRuncoup (P = .02), exponentially weighted moving averages of the ratios (P = .01), and the in season (P = .0001) are significantly associated with the occurrence of injury. No significant associations were found between the workload models, the seasonal periods, and the occurrence of illnesses. Conclusions: These findings suggest the importance of monitoring workload and workload ratios in female professional cyclists to lower the risk of injuries and therefore improve their performances. Furthermore, these results indicate that, in the preseason, additional stressors occur, which could lead to an increased risk of injuries.