Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Thomas W. Kaminski x
  • Journal of Applied Biomechanics x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Sway Area and Velocity Correlated with MobileMat Balance Error Scoring System (BESS) Scores

Jaclyn B. Caccese, Thomas A. Buckley, and Thomas W. Kaminski

The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass–center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

Restricted access

Loaded Vertical Jumping: Force–Velocity Relationship, Work, and Power

Daniel Feeney, Steven J. Stanhope, Thomas W. Kaminski, Anthony Machi, and Slobodan Jaric

The aims of the current study were to explore the pattern of the force–velocity (F–V) relationship of leg muscles, evaluate the reliability and concurrent validity of the obtained parameters, and explore the load associated changes in the muscle work and power output. Subjects performed maximum vertical countermovement jumps with a vest ranging 0–40% of their body mass. The ground reaction force and leg joint kinematics and kinetics were recorded. The data revealed a strong and approximately linear F–V relationship (individual correlation coefficients ranged from 0.78–0.93). The relationship slopes, F- and V-intercepts, and the calculated power were moderately to highly reliable (0.67 < ICC < 0.91), while the concurrent validity F- and V-intercepts, and power with respect to the directly measured values, was (on average) moderate. Despite that a load increase was associated with a decrease in both the countermovement depth and absolute power, the absolute work done increased, as well as the relative contribution of the knee work. The obtained findings generally suggest that the loaded vertical jumps could not only be developed into a routine method for testing the capacities of leg muscles, but also reveal the mechanisms of adaptation of multijoint movements to different loading conditions.