Purpose: Overuse injury risk increases during periods of accelerated growth, which can subsequently impact development in academy soccer, suggesting a need to quantify training exposure. Nonprescriptive development scheme legislation could lead to inconsistent approaches to monitoring maturity and training load. Therefore, this study aimed to communicate current practices of UK soccer academies toward biological maturity and training load. Methods: Forty-nine respondents completed an online survey representing support staff from male Premier League academies (n = 38) and female Regional Talent Clubs (n = 11). The survey included 16 questions covering maturity and training-load monitoring. Questions were multiple-choice or unipolar scaled (agreement 0–100) with a magnitude-based decision approach used for interpretation. Results: Injury prevention was deemed highest importance for maturity (83.0 [5.3], mean [SD]) and training-load monitoring (80.0 [2.8]). There were large differences in methods adopted for maturity estimation and moderate differences for training-load monitoring between academies. Predictions of maturity were deemed comparatively low in importance for bio-banded (biological classification) training (61.0 [3.3]) and low for bio-banded competition (56.0 [1.8]) across academies. Few respondents reported maturity (42%) and training load (16%) to parent/guardians, and only 9% of medical staff were routinely provided this data. Conclusions: Although consistencies between academies exist, disparities in monitoring approaches are likely reflective of environment-specific resource and logistical constraints. Designating consistent and qualified responsibility to staff will help promote fidelity, feedback, and transparency to advise stakeholders of maturity–load relationships. Practitioners should consider biological categorization to manage load prescription to promote maturity-appropriate dose–responses and to help reduce the risk of noncontact injury.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Jamie Salter x
- Refine by Access: All Content x
Monitoring Practices of Training Load and Biological Maturity in UK Soccer Academies
Jamie Salter, Mark B.A. De Ste Croix, Jonathan D. Hughes, Matthew Weston, and Christopher Towlson
Countermovement Jump and Isometric Strength Test–Retest Reliability in English Premier League Academy Football Players
Matthew Springham, Nav Singh, Perry Stewart, Jordan Matthews, Ian Jones, Charlie Norton-Sherwood, Dominic May, Jamie Salter, Anthony J. Strudwick, and Joseph W. Shaw
Purpose: To examine the test–retest reliability of countermovement jump (CMJ) and isometric strength testing measures in elite-level under-18 and under-23 academy football players. Methods: A total of 36 players performed 3 maximal CMJs and isometric abductor (IABS), adductor (IADS), and posterior chain (IPCS) strength tests on 2 separate test days using dual force plates (CMJ and IPCS) and a portable strength testing device (IABS and IADS). Relative (intraclass correlation coefficient) and absolute (coefficient of variation, standard error of the measurement, and minimal detectable change [MDC%]) reliabilities for 34 CMJ, 10 IABS, 10 IADS, and 11 IPCS measures were analyzed using between-sessions best, mean, and within-session methods. Results: For all methods, relative reliability was good to excellent for all CMJ and all IADS measures and poor to good for all IABS and IPCS measures. Absolute reliability was good (ie, coefficient of variation < 10%) for 27 (best) and 28 (mean) CMJ variables and for 6 (IABS and IADS) and 2 (IPCS) isometric measures. Commonly used CMJ measures (jump height, eccentric duration, and flight-time:contraction-time ratio) had good to excellent relative reliability and an MDC% range of 14.6% to 23.7%. Likewise, commonly used isometric peak force measures for IABS, IADS, and IPCS had good to excellent relative reliability and an MDC% range of 22.2% to 26.4%. Conclusions: Commonly used CMJ and isometric strength measures had good test–retest reliability but might be limited by their MDC%. Rate-of-force-development measures (for all isometric tests) and impulse measures (IPCS) are limited by poor relative and absolute reliability and high MDC%. MDC% statistics should be considered in the context of typical responsiveness.