Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Nicholas Gill x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Alex Ross, Nicholas D. Gill, and John B. Cronin

Anthropometrical and physical characteristics have been used to distinguish players of different competition levels and position groups; however, there is no literature on rugby sevens.

Purpose:

To compare the anthropometrical and physical characteristics of international and provincial rugby sevens players and between forwards and backs.

Methods:

To assess whether differences exist, 65 rugby sevens players including 22 international players and 43 provincial-level players were assessed for height, mass, body composition, speed, repeated-sprint ability, lower-body power, upper-body strength, and maximal aerobic endurance during in-season preparation for tournaments.

Results:

Clear differences (2.8−32%; small to very large effect sizes) were observed in all anthropometrical and physical measures between international and provincial players, with the largest differences observed in repeated-sprint ability (5.7%; very large effect size), 40-m-sprint time (4.4%; large effect size), 50-kg squat-jump peak power (32%; large effect size), and multistage fitness-test performance (19%; large effect size). Fewer and smaller differences (0.7−14%; trivial to large effect sizes) were found when comparing forwards and backs, with body height being the most discriminant characteristic (3.5%; large effect size).

Conclusions:

Lower-level rugby sevens players should seek to improve their overall physical profile, particularly their repeated-sprint ability, to reach higher levels in rugby sevens. Furthermore, positional status may have little importance when preparing for rugby sevens.

Restricted access

Alex Ross, Nicholas D. Gill, and John B. Cronin

Purpose:

To compare the running demands and match activity profiles of international and provincial rugby sevens players.

Participants:

84 rugby sevens players, consisting of 16 international players from 1 team and 68 provincial players from 8 teams.

Methods:

Global positioning system analysis was completed during international and provincial tournament matches. Video analysis was also used to quantify the individual match activities during tournament matches.

Results:

Trivial to moderate differences were found in the running demands of international and provincial players, with internationals covering a greater distance at very high speed (ES = 0.30) and performing a greater number of sprints (ES = 0.80). Small differences were found between the 2 levels in all but total tackles (ES = 0.07) and defensive ruck effectiveness (ES = 0.64). International matches incurred a greater overall ball-in-play time than provincial matches (proportion ratio = 1.32).

Conclusions:

These findings demonstrate that both physical and technical factors distinguish international and provincial rugby sevens, although overall match demands are similar.

Restricted access

Matthew R. Blair, Nathan Elsworthy, Nancy J. Rehrer, Chris Button, and Nicholas D. Gill

Purpose: To examine the movement and physiological demands of rugby union officiating in elite competition. Methods: Movement demands of 9 elite officials across 12 Super Rugby matches were calculated, using global positioning system devices. Total distance (in m), relative distance (in m·min−1), and percentage time spent in various speed zones were calculated across a match. Heart-rate (HR) responses were also recorded throughout each match. Cohen d effect sizes were reported to examine the within-match variations. Results: The total distance covered was 8030 (506) m, with a relative distance of 83 (5) m·min−1 and with no differences observed between halves. Most game time was spent at lower movement speeds (76% [2%]; <2.0 m·s−1), with large effects for time spent >7.0 m·s−1 between halves (d = 2.85). Mean HR was 154 (10) beats·min−1 (83.8 [2.9]%HRmax), with no differences observed between the first and second halves. Most game time was spent between 81%HRmax and 90%HRmax (40.5% [7.5%]) with no observable differences between halves. Distances covered above 5.1 m·s−1 were highest during the first 10 min of a match, while distance at speeds 3.7 to 5 m·s−1 decreased during the final 10 min of play. Conclusions: These findings highlight the highly demanding and intermittent nature of rugby union officiating, with only some minor variations in physical and physiological demands across a match. These results have implications for the physical preparation of professional rugby union referees.

Restricted access

Rob Duffield, Johann Edge, Robert Merrells, Emma Hawke, Matt Barnes, David Simcock, and Nicholas Gill

Purpose:

The aim of this study was to determine whether compression garments improve intermittent-sprint performance and aid performance or self-reported recovery from high-intensity efforts on consecutive days.

Methods:

Following familiarization, 14 male rugby players performed two randomized testing conditions (with or without garments) involving consecutive days of a simulated team sport exercise protocol, separated by 24 h of recovery within each condition and 2 weeks between conditions. Each day involved an 80-min high-intensity exercise circuit, with exercise performance determined by repeated 20-m sprints and peak power on a cart dynamometer (single-man scrum machine). Measures of nude mass, heart rate, skin and tympanic temperature, and blood lactate (La) were recorded throughout each day; also, creatine kinase (CK) and muscle soreness were recorded each day and 48 h following exercise.

Results:

No differences (P = .20 to 0.40) were present between conditions on either day of the exercise protocol for repeated 20-m sprint efforts or peak power on a cart dynamometer. Heart rate, tympanic temperature, and body mass did not significantly differ between conditions; however, skin temperature was higher under the compression garments. Although no differences (P = .50) in La or CK were present, participants felt reduced levels of perceived muscle soreness in the ensuing 48 h postexercise when wearing the garments (2.5 ± 1.7 vs 3.5 ± 2.1 for garment and control; P = .01).

Conclusions:

The use of compression garments did not improve or hamper simulated team-sport activity on consecutive days. Despite benefits of reduced self-reported muscle soreness when wearing garments during and following exercise each day, no improvements in performance or recovery were apparent.

Restricted access

Kristie-Lee Taylor, John Cronin, Nicholas D. Gill, Dale W. Chapman, and Jeremy Sheppard

Purpose:

This investigation aimed to quantify the typical variation for kinetic and kinematic variables measured during loaded jump squats.

Methods:

Thirteen professional athletes performed six maximal effort countermovement jumps on four occasions. Testing occurred over 2 d, twice per day (8 AM and 2 PM) separated by 7 d, with the same procedures replicated on each occasion. Jump height, peak power (PP), relative peak power (RPP), mean power (MP), peak velocity (PV), peak force (PF), mean force (MF), and peak rate of force development (RFD) measurements were obtained from a linear optical encoder attached to a 40 kg barbell.

Results:

A diurnal variation in performance was observed with afternoon values displaying an average increase of 1.5–5.6% for PP, RPP, MP, PV, PF, and MF when compared with morning values (effect sizes ranging from 0.2–0.5). Day to day reliability was estimated by comparing the morning trials (AM reliability) and the afternoon trials (PM reliability). In both AM and PM conditions, all variables except RFD demonstrated coefficients of variations ranging between 0.8–6.2%. However, for a number of variables (RPP, MP, PV and height), AM reliability was substantially better than PM. PF and MF were the only variables to exhibit a coefficient of variation less than the smallest worthwhile change in both conditions.

Discussion:

Results suggest that power output and associated variables exhibit a diurnal rhythm, with improved performance in the afternoon. Morning testing may be preferable when practitioners are seeking to conduct regular monitoring of an athlete’s performance due to smaller variability.

Restricted access

Matt R. Cross, Matt Brughelli, Scott R. Brown, Pierre Samozino, Nicholas D. Gill, John B. Cronin, and Jean-Benoît Morin

Purpose:

To compare mechanical properties of overground sprint running in elite rugby union and rugby league athletes.

Methods:

Thirty elite rugby code (15 rugby union and 15 rugby league) athletes participated in this cross-sectional analysis. Radar was used to measure maximal overground sprint performance over 20 or 30 m (forwards and backs, respectively). In addition to time at 2, 5, 10, 20, and 30 m, velocity-time signals were analyzed to derive external horizontal force–velocity relationships with a recently validated method. From this relationship, the maximal theoretical velocity, external relative and absolute horizontal force, horizontal power, and optimal horizontal force for peak power production were determined.

Results:

While differences in maximal velocity were unclear between codes, rugby union backs produced moderately faster split times, with the most substantial differences occurring at 2 and 5 m (ES 0.95 and 0.86, respectively). In addition, rugby union backs produced moderately larger relative horizontal force, optimal force, and peak power capabilities than rugby league backs (ES 0.73−0.77). Rugby union forwards had a higher absolute force (ES 0.77) despite having ~12% more body weight than rugby league forwards.

Conclusions:

In this elite sample, rugby union athletes typically displayed greater short-distance sprint performance, which may be linked to an ability to generate high levels of horizontal force and power. The acceleration characteristics presented in this study could be a result of the individual movement and positional demands of each code.

Restricted access

Stephen P. Fenemor, Matthew W. Driller, Nicholas D. Gill, Brad Anderson, Julia R. Casadio, Stacy T. Sims, and C. Martyn Beaven

Purpose: Although recommendations for effective heat acclimation (HA) strategies for many circumstances exist, best-practice HA protocols specific to elite female team-sport athletes are yet to be established. Therefore, the authors aimed to investigate the effectiveness and retention of a passive HA protocol integrated in a female Olympic rugby sevens team training program. Methods: Twelve elite female rugby sevens athletes undertook 10 days of passive HA across 2 training weeks. Tympanic temperature (T Tymp), sweat loss, heart rate, and repeated 6-second cycling sprint performance were assessed using a sport-specific heat stress test Pre-HA, after 3 days (Mid-HA), after 10 days (Post-HA), and 15 days post-HA (Decay). Results: Compared with Pre-HA, submaximal T Tymp was lower Mid-HA and Post-HA (both by −0.2 [0.7] °C; d ≥ 0.71), while resting T Tymp was lower Post-HA (by −0.3 [0.2] °C; d = 0.81). There were no differences in T Tymp at Decay compared with Pre-HA, nor were there any differences in heart rate or sweat loss at any time points. Mean peak 6-second power output improved Mid-HA and Post-HA (76 [36] W; 75 [34] W, respectively; d ≥ 0.45) compared with Pre-HA. The observed performance improvement persisted at Decay by 65 (45) W (d = 0.41). Conclusions: Ten days of passive HA can elicit some thermoregulatory and performance benefits when integrated into a training program in elite female team-sport athletes. However, such a protocol does not provide a sufficient thermal impulse for thermoregulatory adaptations to be retained after 15 days with no further heat stimulus.

Restricted access

C. Martyn Beaven, Christian Cook, David Gray, Paul Downes, Ian Murphy, Scott Drawer, John R. Ingram, Liam P. Kilduff, and Nicholas Gill

Rugby preseason training involves high-volume strength and conditioning training, necessitating effective management of the recovery-stress state to avoid overtraining and maximize adaptive gains.

Purpose:

Compression garments and an electrostimulation device have been proposed to improve recovery by increasing venous blood flow. These devices were assessed using salivary testosterone and cortisol, plasma creatine kinase, and player questionnaires to determine sleep quality, energy level, mood, and enthusiasm.

Methods:

Twenty-five professional rugby players were assigned to 1 of 2 treatments (compression garment or a concurrent combination of electrostimulation and compression) in a crossover design over 2 × 2-wk training blocks.

Results:

Substantial benefits were observed in self-assessed energy levels (effect size [ES] 0.86), and enthusiasm (ES 0.80) as a result of the combined treatment when compared with compression-garment use. The combination treatment had no discernable effect on salivary hormones, with no treatment effect observed. The electrostimulation device did tend to accelerate the return of creatine kinase to baseline levels after 2 preseason rugby games when compared with the compression-garment intervention (ES 0.61; P = .08).

Conclusions:

Electrostimulation elicited psychometric and physiological benefits reflective of an improved recovery-stress state in professional male rugby players when combined with a lower-body compression garment.

Restricted access

Christos K. Argus, Nicholas D. Gill, Justin W.L. Keogh, Michael R. McGuigan, and Will G. Hopkins

Purpose:

There is little literature comparing contrast training programs typically performed by team-sport athletes within a competitive phase. We compared the effects of two contrast training programs on a range of measures in high-level rugby union players during the competition season.

Methods:

The programs consisted of a higher volume-load (strength-power) or lower volume-load (speed-power) resistance training; each included a tapering of loading (higher force early in the week, higher velocity later in the week) and was performed twice a week for 4 wk. Eighteen players were assessed for peak power during a bodyweight countermovement jump (BWCMJ), bodyweight squat jump (BWSJ), 50 kg countermovement jump (50CMJ), 50 kg squat jump (50SJ), broad jump (BJ), and reactive strength index (RSI; jump height divided by contact time during a depth jump). Players were then randomized to either training group and were reassessed following the intervention. Inferences were based on uncertainty in outcomes relative to thresholds for standardized changes.

Results:

There were small between-group differences in favor of strength-power training for mean changes in the 50CMJ (8%; 90% confidence limits, ±8%), 50SJ (8%; ±10%), and BJ (2%; ±3%). Differences between groups for BWCMJ, BWSJ, and reactive strength index were unclear. For most measures there were smaller individual differences in changes with strength-power training.

Conclusion:

Our findings suggest that high-level rugby union athletes should be exposed to higher volume-load contrast training which includes one heavy lifting session each week for larger and more uniform adaptation to occur in explosive power throughout a competitive phase of the season.