Search Results

You are looking at 41 - 50 of 337 items for :

  • "triathlon" x
  • Refine by Access: All Content x
Clear All
Restricted access

Race-Day Carbohydrate Intakes of Elite Triathletes Contesting Olympic-Distance Triathlon Events

Gregory R. Cox, Rodney J. Snow, and Louise M. Burke

The aim of this study was to investigate the prerace and during-race carbohydrate intakes of elite-level triathletes contesting draft-legal Olympic-distance triathlon (ODT) events. Self-reported prerace and during-race nutrition data were collected at 3 separate ODT events from 51 elite senior and under-23 triathletes. One hundred twenty-nine observations of food and fluid intake representing actual prerace (n = 62) and during-race (n = 67) nutrition practices from 36 male and 15 female triathletes were used in the final analysis of this study. Female triathletes consumed significantly more carbohydrate on the morning before race start when corrected for body mass and race start time than their male counterparts (p < .05). Male and female triathletes consumed 26% more energy (kJ/kg) and 24% more carbohydrate (g/kg) when commencing a race after midday (1:00–1:30 p.m.) than for a late morning (11:00–11:15 a.m.) race start. During the race, triathletes consumed less than 60 g of carbohydrate on 66% of occasions, with average total race intakes of 48 ± 25 and 49 ± 25 g carbohydrate for men and women, respectively. Given average race times of 1:57:07 hr and 2:08:12 hr, hourly carbohydrate intakes were ~25 g and ~23 g for men and women, respectively. Although most elite ODT triathletes consume sufficient carbohydrate to meet recommended prerace carbohydrate intake guidelines, during-race carbohydrate intakes varied considerably, with many failing to meet recommended levels.

Restricted access

Carbohydrate Intake in Form of Gel Is Associated With Increased Gastrointestinal Distress but Not With Performance Differences Compared With Liquid Carbohydrate Ingestion During Simulated Long-Distance Triathlon

Mahdi Sareban, David Zügel, Karsten Koehler, Paul Hartveg, Martina Zügel, Uwe Schumann, Jürgen Michael Steinacker, and Gunnar Treff

The ingestion of exogenous carbohydrates (CHO) during prolonged endurance exercise, such as long-distance triathlon, is considered beneficial with regard to performance. However, little is known about whether this performance benefit differs among different forms of CHO administration. To this end, the purpose of our study was to determine the impact of CHO ingestion from a semisolid source (GEL) on measures of performance and gastrointestinal (GI) comfort compared with CHO ingestion from a liquid source (LIQ). Nine well-trained triathletes participated in this randomized crossover study. Each participant completed a 60-min swim, 180-min bike exercise, and a 60-min all-out run in a laboratory environment under 2 conditions, once while receiving 67.2 ± 7.2 g · h−1 (M ± SD) of CHO from GEL and once while receiving 67.8 ± 4.2 g · h−1 of CHO from LIQ. The amount of fluid provided was matched among conditions. Respiratory exchange ratio (RER), blood glucose, and lactate as well as GI discomfort were assessed at regular intervals during the experiment. The distance covered during the final all-out run was not significantly different among participants ingesting GEL (11.81 ± 1.38 km) and LIQ (11.91 ± 1.53 km; p = .89). RER, blood glucose, and lactate did not differ significantly at any time during the experiment. Seven participants reported GI discomfort with GEL, and no athlete reported GI discomfort with LIQ (p = .016). This study suggests that administration of GEL does not alter long-distance triathlon performance when compared with LIQ, but GEL seems to be associated with reduced GI tolerance. Athletes should consider this a potential disadvantage of GEL administration during long-distance triathlon.

Restricted access

Sport Psychology Library: Triathlon

Karen Cogan

Restricted access

Aggravation of Pulmonary Diffusing Capacity in Highly Trained Athletes by 6 Weeks of Low-Volume, Low-Intensity Training

Olivier Galy, Laurent Maimoun, Olivier Coste, Jérôme Manetta, Alain Boussana, Christian Préfaut, and Olivier Hue

Purpose:

Postexercise alveolar-capillary membrane-diffusing capacity (DLco) often decreases in highly trained endurance athletes and seems linked to their training status. To test the hypothesis that training status influences postexercise DLco, 13 male and 2 female triathletes (20.2 ± 4.4 y old, 175.2 ± 6.7 cm tall; weight in a range of 66.6 ± 7.4 kg to 67.4 ± 7.8 kg during the 1-y study) were randomized into experimental (n = 7) and control (n = 8) groups and performed VO2max cycle tests and simulated cycle-run successions (CR) of 30 min + 20 min after 3 periods in the competitive season.

Methods:

Both groups were tested before (pre- HTP) and after a 30-wk high-training period (HTP) with high training volume, intensity, and frequency. The experimental group was then also tested after a 6-wk low-training period (LTP) with low training volume, intensity, and frequency, while the control group continued training according to the HTP schedule for these 6 wk. Ventilatory data were collected continuously. DLco testing was performed before and 30, 60, and 120 min after the CR trials.

Results:

Whatever the period or group, DLco was significantly decreased 30 min after CR, with a significantly greater decrease in the experimental group than the control group in LTP (−15.7% and –9.3% of DLco, respectively).

Conclusions:

Six weeks of low training volume and intensity were sufficient to reverse the effects of high training volume and intensity on the alveolar-capillary membrane after a CR succession in competitive triathletes.

Restricted access

Blunting of Exercise-Induced Salivary Testosterone in Elite-Level Triathletes With a 10-Day Training Camp

John Hough, Caroline Robertson, and Michael Gleeson

Purpose:

This study examined the influence of 10 days of intensified training on salivary cortisol and testosterone responses to 30-min, high-intensity cycling (55/80) in a group of male elite triathletes.

Methods:

Seven elite male triathletes (age 19 ± 1 y, V̇O2max 67.6 ± 4.5 mL · kg–1 · min–1) completed the study. Swim distances increased by 45%. Running and cycling training hours increased by 25% and 229%, respectively. REST-Q questionnaires assessed mood status before, during, and after the training period. Unstimulated saliva samples were collected before, after, and 30 min after a continuous, high-intensity exercise test. Salivary cortisol and testosterone concentrations were assessed.

Results:

Compared with pretraining, blunted exercise-induced salivary testosterone responses to the posttraining 55/80 were found (P = .004). The absolute response of salivary testosterone concentrations to the 55/80 decreased pretraining to posttraining from 114% to 85%. No changes were found in exercise-induced salivary cortisol concentration responses to the 55/80. REST-Q scores indicated no changes in the participants’ psychological stress–recovery levels over the training camp.

Conclusions:

The blunted exercise-induced salivary testosterone is likely due to decreased testicular testosterone production and/or secretion, possibly attributable to hypothalamic dysfunction or reduced testicular blood flow. REST-Q scores suggest that the triathletes coped well with training-load elevations, which could account for the finding of no change in the exercise-induced salivary cortisol concentration. Overall, these findings suggest that the 55/80 can detect altered exercise-induced salivary testosterone concentrations in an elite athletic population due to increased training stress. However, this alteration occurs independently of a perceived elevation of training stress.

Restricted access

Cardiac Parasympathetic Activity and Race Performance: An Elite Triathlete Case Study

Jamie Stanley, Shaun D’Auria, and Martin Buchheit

The authors examined whether changes in heart-rate (HR) variability (HRV) could consistently track adaptation to training and race performance during a 32-wk competitive season. An elite male long-course triathlete recorded resting HR (RHR) each morning, and vagal-related indices of HRV (natural logarithm of the square root of mean squared differences of successive R−R intervals [ln rMSSD] and the ratio of ln rMSSD to R−R interval length [ln rMSSD:RR]) were assessed. Daily training load was quantified using a power meter and wrist-top GPS device. Trends in HRV indices and training load were examined by calculating standardized differences (ES). The following trends in week-to-week changes were consistently observed: (1) When the triathlete was coping with a training block, RHR decreased (ES −0.38 [90% confidence limits −0.05;−0.72]) and ln rMSSD increased (+0.36 [0.71;0.00]). (2) When the triathlete was not coping, RHR increased (+0.65 [1.29;0.00]) and ln rMSSD decreased (−0.60 [0.00;−1.20]). (3) Optimal competition performance was associated with moderate decreases in ln rMSSD (−0.86 [−0.76;−0.95]) and ln rMSSD:RR (−0.90 [−0.60;−1.20]) in the week before competition. (4) Suboptimal competition performance was associated with small decreases in ln rMSSD (−0.25 [−0.76;−0.95]) and trivial changes in ln rMSSD:RR (−0.04 [0.50;−0.57]) in the week before competition. To conclude, in this triathlete, a decrease in RHR concurrent with increased ln rMSSD compared with the previous week consistently appears indicative of positive training adaptation during a training block. A simultaneous reduction in ln rMSSD and ln rMSSD:RR during the final week preceding competition appears consistently indicative of optimal performance.

Restricted access

Training-Intensity Distribution During an Ironman Season: Relationship With Competition Performance

Iker Muñoz, Roberto Cejuela, Stephen Seiler, Eneko Larumbe, and Jonathan Esteve-Lanao

Purpose:

To describe training loads during an Ironman training program based on intensity zones and observe training–performance relationships.

Methods:

Nine triathletes completed a program with the same periodization model aiming at participation in the same Ironman event. Before and during the study, subjects performed ramp-protocol tests, running, and cycling to determine aerobic (AeT) and anaerobic thresholds (AnT) through gas-exchange analysis. For swimming, subjects performed a graded lactate test to determine AeT and AnT. Training was subsequently controlled by heart rate (HR) during each training session over 18 wk. Training and the competition were both quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity; <AeT), zone 2 (moderate intensity; between AeT and AnT), and zone 3 (high intensity; >AnT).

Results:

Most of training time was spent in zone 1 (68% ± 14%), whereas the Ironman competition was primarily performed in zone 2 (59% ± 22%). Significant inverse correlations were found between both total training time and training time in zone 1 vs performance time in competition (r = –.69 and –.92, respectively). In contrast, there was a moderate positive correlation between total training time in zone 2 and performance time in competition (r = .53) and a strong positive correlation between percentage of total training time in zone 2 and performance time in competition (r = .94).

Conclusions:

While athletes perform with HR mainly in zone 2, better performances are associated with more training time spent in zone 1. A high amount of cycling training in zone 2 may contribute to poorer overall performance.

Restricted access

Endurance Training on Low-Carbohydrate and Grain-Based Diets: A Case Study

Richard R. Rosenkranz, Chad M. Cook, and Mark D. Haub

Purpose:

To illustrate the effects of low-carbohydrate (LC) and grain-based (GB) diets on body composition, biomarkers, athletic training, and performance in an elite triathlete.

Methods:

The athlete followed 2 dietary interventions for 14 d while maintaining a prescheduled training program. Pre- and post intervention measurements for each diet included plasma and serum samples, resting energy expenditure, body composition, and a performance bike ride.

Results:

Compared with the GB diet, the LC diet elicited more disruptions to training and unfavorable subjective experiences. Total cholesterol, HDL cholesterol, LDL cholesterol, ratings of perceived exertion, and heart rate were elevated on the LC diet. Blood insulin, resting lactate, post exercise lactate, and C-reactive protein were lowest on the LC diet.

Conclusion:

The LC diet resulted in both favorable and unfavorable outcomes. The primary observation was a disruption to scheduled training on the LC diet. Researchers should consider how the potential mediating effect of disruptions to training could influence pretest–posttest designs.

Restricted access

The Challenge of Performing Aerobic Exercise in Tropical Environments: Applied Knowledge and Perspectives

Olivier Hue

The tropical climate is unique in that the seasons are dominated by the movement of the tropical rain belt, resulting in dry and wet seasons rather than the four-season pattern of changes in temperature and day length seen in other parts of the world. More than 33% of the world population lives in the humid tropics, which are characterized by consistently high monthly temperatures and rainfall that exceeds evapotranspiration for most days of the year. Both the 2014 Football World Cup (in Brazil) and the 2016 Olympic Games (in Rio de Janeiro) will take place in this climate. This review focuses on the effects of the tropical environment on human exercise performance, with a special emphasis on prolonged aerobic exercise, such as swimming, cycling, and running. Some of the data were collected in Guadeloupe, the French West Indies Island where all the French teams will be training for the 2016 Olympic Games. We will first fully define the tropical climate and its effects on performance in these sports. Then we will discuss the types of adaptation that help to enhance performance in this climate, as well as the issues concerning the prescription of adequate training loads. We will conclude with some perspectives for future research.

Restricted access

Influence of Periodizing Dietary Carbohydrate on Iron Regulation and Immune Function in Elite Triathletes

Alannah K. A. McKay, Ida A. Heikura, Louise M. Burke, Peter Peeling, David B. Pyne, Rachel P.L. van Swelm, Coby M. Laarakkers, and Gregory R. Cox

period between two World Triathlon Series events. In a randomized, cross-over design, the athletes completed two 4-day experimental trials with high CHO availability (HIGH) or adopted an alternate-day sleep-low protocol (LOW) (Figure  1 ). Athletes completed familiarization tests prior to the