Search Results

You are looking at 51 - 60 of 476 items for :

  • "cognition" x
  • Psychology and Behavior in Sport/Exercise x
  • All content x
Clear All
Restricted access

Kathryn T. Goode and David L. Roth

Experienced runners completed a Thoughts During Running Scale (TORS) immediately after a typical training run to assess the prevalence of certain thoughts during running. The Profile of Mood States (POMS) was also completed before and after the run. Confirmatory factor analyses revealed that a five-factor model provided better fit than simpler models. Items concerning the demands of the running activity and the monitoring of body responses loaded on one "associative" factor. The four "nonassociative" factors in this model were labeled Daily Events, Interpersonal Relationships, External Surroundings, and Spiritual Reflection. Correlational analyses indicated small but significant relationships between the TDRS dimensions and changes in mood. Increases in vigor were correlated with the tendency to engage in nonassociative thought, and decreases in tension and anxiety were found among those who thought about interpersonal relationships during the run. These results supplement findings on the effects of certain thought patterns during strenuous exercise.

Restricted access

Sandra A. Billinger, Eric D. Vidoni, Jill K. Morris, John P. Thyfault and Jeffrey M. Burns

Positive physiologic and cognitive responses to aerobic exercise have resulted in a proposed cardiorespiratory (CR) fitness hypothesis in which fitness gains drive changes leading to cognitive benefit. The purpose of this study was to directly assess the CR fitness hypothesis. Using data from an aerobic exercise trial, we examined individuals who completed cardiopulmonary and cognitive testing at baseline and 26 weeks. Change in cognitive test performance was not related to CR fitness change (r 2 = .06, p = .06). However, in the subset of individuals who gave excellent effort during exercise testing, change in cognitive test performance was related to CR fitness change (r 2 = .33, p < .01). This was largely due to change in the cognitive domain of attention (r 2 = .36, p < .01). The magnitude of change was not explained by duration of exercise. Our findings support further investigation of the CR fitness hypothesis and mechanisms by which physiologic adaptation may drive cognitive change.

Restricted access

Angela L. Ridgel, Chul-Ho Kim, Emily J. Fickes, Matthew D. Muller and Jay L. Alberts

Individuals with Parkinson’s disease (PD) often experience cognitive declines. Although pharmacologic therapies are helpful in treating motor deficits in PD, they do not appear to be effective for cognitive complications. Acute bouts of moderate aerobic exercise have been shown to improve cognitive function in healthy adults. However, individuals with PD often have difficulty with exercise. This study examined the effects of passive leg cycling on executive function in PD. Executive function was assessed with Trail-Making Test (TMT) A and B before and after passive leg cycling. Significant improvements on the TMT-B test occurred after passive leg cycling. Furthermore, the difference between times to complete the TMT-B and TMT-A significantly decreased from precycling to postcycling. Improved executive function after passive cycling may be a result of increases in cerebral blood flow. These findings suggest that passive exercise could be a concurrent therapy for cognitive decline in PD.

Restricted access

John R. Biggan, Forest Melton, Michael A. Horvat, Mark Ricard, David Keller and Christopher T. Ray

The understanding of prefrail and nonfrail older adults’ postural control with and without increased environmental and cognitive stress is imperative to the development of targeted interventions to decrease fall risk within these populations. Thirty-eight individuals participated in this study. Postural control testing included the Sensory Organization Test (SOT) on a NeuroCom EquiTest. Cognitive and environmental load testing was performed during Condition 6 of the SOT. Though there were no group differences on composite equilibrium score (p = .06), the cognitive task (Stroop task) impaired equilibrium scores more than the auditory or visual distracter tasks (p < .05 and p < .01) for both groups. These results suggest that both prefrail and nonfrail older adults’ postural control is reduced in demanding environments. Given these findings, the need for multimodal exercise interventions to target both physical and cognitive factors is apparent.

Restricted access

Phillip D. Tomporowski

Several approaches have been taken to evaluate the effects of physical and mental training interventions on the mental abilities of older adults. A selective review of theory-based research suggests that older adults’ mental functioning may improve following both forms of training; however, the mechanisms that underlie these changes are not well understood. Several multidisciplinary approaches are evaluated that may help to explain how both exercise and mental training interventions may modify or offset age-related declines in mental abilities.

Restricted access

Jamie L. Moul, Bert Goldman and Beverly Warren

The effect of exercise on cognitive performance in an older population was studied. Thirty sedentary men and women 65–72 years of age were randomly assigned to a walking group, a weight training group, or a placebo control group. Intervention groups exercised 30–60 min 5 days per week for 16 weeks, with the walking group training at 60% heart rate reserve, the weight training group employing the DAPRE method of weight progression, and the placebo control group engaging in mild range-of-motion and flexibility movements that kept their heart rates close to resting levels. At baseline and 16 weeks posttraining each subject completed the Ross Information Processing Assessment (RIPA), a maximal graded treadmill test, and a strength assessment of the knee extensors and elbow flexors. Sixteen weeks of walking improved VO2peak of the sedentary subjects 15.8%; VO2peak did not improve in the other two groups. Additionally, the RIPA scores of the walking group increased 7.5%, while those of the weight-training and control groups showed little change.

Restricted access

Clare MacMahon, Linda Schücker, Norbert Hagemann and Bernd Strauss

This study investigated the effect of cognitive fatigue on physical performance in a paced running task. Experienced runners (n = 20) performed two 3,000-m runs on an indoor track, once after cognitive fatigue, and once under nonfatigued conditions. Completion times were significantly slower in the cognitive fatigue condition (M = 12:11,88 min, SD = 0:54,26), compared with the control condition (M = 11:58,56 min, SD = 0:48,39), F(1, 19) = 8.58, p = .009, eta2p = .31. There were no differences in heart rate, t(17) = 0.13, p > .05, blood lactate levels, t(19) = 1.19, p > .05, or ratings of perceived exertion F(1, 19) = .001, p 3 .05. While previous research has examined the impact of cognitive tasks on physical tasks, this is the first study to examine a self-paced physical task, showing that cognitive activity indeed contributes significantly to overall performance. Specifically, cognitive fatigue increased the perception of exertion, leading to lesser performance on the running task.

Restricted access

Chun-Chih Wang, Chien-Heng Chu, I-Hua Chu, Kuei-Hui Chan and Yu-Kai Chang

This study was designed to examine the modulation of executive functions during acute exercise and to determine whether exercise intensity moderates this relationship. Eighty college-aged adults were recruited and randomly assigned into one of the four following groups: control, 30%, 50%, and 80% heart rate reserve. The Wisconsin Card Sorting Test (WCST) was administered during each intervention. The results indicated that the majority of the WCST performances were impaired in the high exercise intensity group relative to those of the other three groups, whereas similar performance rates were maintained in the low- and moderate-intensity groups. These findings suggest that transient hypofrontality occurs during high-intensity exercise, but not during low- and moderate-intensity exercises. Future research aimed at employing the dual-mode theory, and applying the reticular-activating hypofrontality model is recommended to further the current knowledge.

Restricted access

Kara K. Palmer, Matthew W. Miller and Leah E. Robinson

A growing body of research has illuminated beneficial effects of a single bout of physical activity (i.e., acute exercise) on cognitive function in school-age children. However, the influence of acute exercise on preschoolers’ cognitive function has not been reported. To address this shortcoming, the current study examined the effects of a 30-min bout of exercise on preschoolers’ cognitive function. Preschoolers’ cognitive function was assessed following a single bout of exercise and a single sedentary period. Results revealed that, after engaging in a bout of exercise, preschoolers exhibited markedly better ability to sustain attention, relative to after being sedentary (p = .006, partial eta square = .400). Based on these findings, providing exercise opportunities appears to enhance preschoolers’ cognitive function.

Restricted access

Arthur D. Fisk and Wendy A. Rogers

Two important questions are addressed in this article. The first concerns whether performance of well-learned skills is maintained as individuals grow older. The second question concerns whether older adults are able to acquire new skills. The answer to both questions is “yes”; however, the acquisition rate and the final performance level for newly acquired skills is generally less for older adults than for younger adults. The article resolves an apparent puzzle of how it is that older adults are capable of successful performance of everyday activities, given noted declines in cognitive-ability-type tasks shown for performance in laboratory studies. A brief discussion of age-related training strategies to enhance skill learning is provided.