Search Results

You are looking at 61 - 70 of 503 items for :

  • "cognition" x
  • Psychology and Behavior in Sport/Exercise x
  • All content x
Clear All
Restricted access

Philip D. Tomporowski, Catherine L. Davis, Kate Lambourne, Mathew Gregoski and Joseph Tkacz

The short-term aftereffects of a bout of moderate aerobic exercise were hypothesized to facilitate children’s executive functioning as measured by a visual task-switching test. Sixty-nine children (mean age = 9.2 years) who were overweight and inactive performed a category-decision task before and immediately following a 23-min bout of treadmill walking and, on another session, before and following a nonexercise period. The acute bout of physical activity did not influence the children’s global switch cost scores or error rates. Age-related differences in global switch cost scores, but not error scores, were obtained. These results, in concert with several studies conducted with adults, fail to confirm that single bouts of moderately intense physical activity influence mental processes involved in task switching.

Restricted access

Arthur F. Kramer, Sowon Hahn and Edward McAuley

The article provides a brief review of the literature on the relationship between aerobic Fitness and neurocognitive function, particularly as it relates to older adults. Cross-sectional studies provide strong support for the beneficial influence of fitness on neurocognitive function. The longitudinal or interventional literature, however, provides more equivocal support for this relationship. In discussing the literature, the authors introduce a new hypothesis, the executive control/fitness hypothesis, which suggests that selective neurocognitive benefits will be observed with improvements in aerobic fitness; that is, executive control processes that include planning, scheduling, task coordination, inhibition, and working memory will benefit from enhanced fitness. Preliminary evidence for this hypothesis is discussed.

Restricted access

Clare MacMahon, Linda Schücker, Norbert Hagemann and Bernd Strauss

This study investigated the effect of cognitive fatigue on physical performance in a paced running task. Experienced runners (n = 20) performed two 3,000-m runs on an indoor track, once after cognitive fatigue, and once under nonfatigued conditions. Completion times were significantly slower in the cognitive fatigue condition (M = 12:11,88 min, SD = 0:54,26), compared with the control condition (M = 11:58,56 min, SD = 0:48,39), F(1, 19) = 8.58, p = .009, eta2p = .31. There were no differences in heart rate, t(17) = 0.13, p > .05, blood lactate levels, t(19) = 1.19, p > .05, or ratings of perceived exertion F(1, 19) = .001, p 3 .05. While previous research has examined the impact of cognitive tasks on physical tasks, this is the first study to examine a self-paced physical task, showing that cognitive activity indeed contributes significantly to overall performance. Specifically, cognitive fatigue increased the perception of exertion, leading to lesser performance on the running task.

Restricted access

Christiano Robles Rodrigues Alves, Bruno Gualano, Pollyana Pereira Takao, Paula Avakian, Rafael Mistura Fernandes, Diego Morine and Monica Yuri Takito

The aim of this study was to compare the effects of acute aerobic and strength exercises on selected executive functions. A counterbalanced, crossover, randomized trial was performed. Forty-two healthy women were randomly submitted to three different conditions: (1) aerobic exercise, (2) strength exercise, and (3) control condition. Before and after each condition, executive functions were measured by the Stroop Test and the Trail Making Test. Following the aerobic and strength sessions, the time to complete the Stroop “non-color word” and “color word” condition was lower when compared with that of the control session. The performance in the Trail Making Test was unchanged. In conclusion, both acute aerobic and strength exercises improve the executive functions. Nevertheless, this positive effect seems to be task and executive function dependent.

Restricted access

Darla M. Castelli, Charles H. Hillman, Sarah M. Buck and Heather E. Erwin

The relationship between physical fitness and academic achievement has received much attention owing to the increasing prevalence of children who are overweight and unfit, as well as the inescapable pressure on schools to produce students who meet academic standards. This study examined 259 public school students in third and fifth grades and found that field tests of physical fitness were positively related to academic achievement. Specifically, aerobic capacity was positively associated with achievement, whereas BMI was inversely related. Associations were demonstrated in total academic achievement, mathematics achievement, and reading achievement, thus suggesting that aspects of physical fitness may be globally related to academic performance in preadolescents. The findings are discussed with regards to maximizing school performance and the implications for educational policies.

Restricted access

Kara K. Palmer, Matthew W. Miller and Leah E. Robinson

A growing body of research has illuminated beneficial effects of a single bout of physical activity (i.e., acute exercise) on cognitive function in school-age children. However, the influence of acute exercise on preschoolers’ cognitive function has not been reported. To address this shortcoming, the current study examined the effects of a 30-min bout of exercise on preschoolers’ cognitive function. Preschoolers’ cognitive function was assessed following a single bout of exercise and a single sedentary period. Results revealed that, after engaging in a bout of exercise, preschoolers exhibited markedly better ability to sustain attention, relative to after being sedentary (p = .006, partial eta square = .400). Based on these findings, providing exercise opportunities appears to enhance preschoolers’ cognitive function.

Restricted access

Angela L. Ridgel, Chul-Ho Kim, Emily J. Fickes, Matthew D. Muller and Jay L. Alberts

Individuals with Parkinson’s disease (PD) often experience cognitive declines. Although pharmacologic therapies are helpful in treating motor deficits in PD, they do not appear to be effective for cognitive complications. Acute bouts of moderate aerobic exercise have been shown to improve cognitive function in healthy adults. However, individuals with PD often have difficulty with exercise. This study examined the effects of passive leg cycling on executive function in PD. Executive function was assessed with Trail-Making Test (TMT) A and B before and after passive leg cycling. Significant improvements on the TMT-B test occurred after passive leg cycling. Furthermore, the difference between times to complete the TMT-B and TMT-A significantly decreased from precycling to postcycling. Improved executive function after passive cycling may be a result of increases in cerebral blood flow. These findings suggest that passive exercise could be a concurrent therapy for cognitive decline in PD.

Restricted access

Jamie L. Moul, Bert Goldman and Beverly Warren

The effect of exercise on cognitive performance in an older population was studied. Thirty sedentary men and women 65–72 years of age were randomly assigned to a walking group, a weight training group, or a placebo control group. Intervention groups exercised 30–60 min 5 days per week for 16 weeks, with the walking group training at 60% heart rate reserve, the weight training group employing the DAPRE method of weight progression, and the placebo control group engaging in mild range-of-motion and flexibility movements that kept their heart rates close to resting levels. At baseline and 16 weeks posttraining each subject completed the Ross Information Processing Assessment (RIPA), a maximal graded treadmill test, and a strength assessment of the knee extensors and elbow flexors. Sixteen weeks of walking improved VO2peak of the sedentary subjects 15.8%; VO2peak did not improve in the other two groups. Additionally, the RIPA scores of the walking group increased 7.5%, while those of the weight-training and control groups showed little change.

Restricted access

Christopher J. Brush, Ryan L. Olson, Peter J. Ehmann, Steven Osovsky and Brandon L. Alderman

The purpose of this study was to examine possible dose–response and time course effects of an acute bout of resistance exercise on the core executive functions of inhibition, working memory, and cognitive flexibility. Twenty-eight participants (14 female; M age = 20.5 ± 2.1 years) completed a control condition and resistance exercise bouts performed at 40%, 70%, and 100% of their individual 10-repetition maximum. An executive function test battery was administered at 15 min and 180 min postexercise to assess immediate and delayed effects of exercise on executive functioning. At 15 min postexercise, high-intensity exercise resulted in less interference and improved reaction time (RT) for the Stroop task, while at 180 min low- and moderate-intensity exercise resulted in improved performance on plus–minus and Simon tasks, respectively. These findings suggest a limited and task-specific influence of acute resistance exercise on executive function in healthy young adults.

Restricted access

Mirko Schmidt, Katja Jäger, Fabienne Egger, Claudia M. Roebers and Achim Conzelmann

Although the positive effects of different kinds of physical activity (PA) on cognitive functioning have already been demonstrated in a variety of studies, the role of cognitive engagement in promoting children’s executive functions is still unclear. The aim of the current study was therefore to investigate the effects of two qualitatively different chronic PA interventions on executive functions in primary school children. Children (N = 181) aged between 10 and 12 years were assigned to either a 6-week physical education program with a high level of physical exertion and high cognitive engagement (team games), a physical education program with high physical exertion but low cognitive engagement (aerobic exercise), or to a physical education program with both low physical exertion and low cognitive engagement (control condition). Executive functions (updating, inhibition, shifting) and aerobic fitness (multistage 20-m shuttle run test) were measured before and after the respective condition. Results revealed that both interventions (team games and aerobic exercise) have a positive impact on children’s aerobic fitness (4–5% increase in estimated VO2max). Importantly, an improvement in shifting performance was found only in the team games and not in the aerobic exercise or control condition. Thus, the inclusion of cognitive engagement in PA seems to be the most promising type of chronic intervention to enhance executive functions in children, providing further evidence for the importance of the qualitative aspects of PA.