Search Results

You are looking at 1 - 10 of 56 items for :

  • Journal of Applied Biomechanics x
  • Refine by Access: All Content x
Clear All
Restricted access

Static and Dynamic Properties of Various Baseballs

Shonn P. Hendee, Richard M. Greenwald, and Joseph J. Crisco

In this study we investigated the compressive quasi-static mechanical properties and dynamic impact behavior of baseballs. Our purpose was to determine if static testing could be used to describe dynamic ball impact properties, and to compare static and dynamic properties between traditional and modified baseballs. Average stiffness and energy loss from 19 ball models were calculated from quasi-static compression data. Dynamic impact variables were determined from force–time profiles of balls impacted into a flat stationary target at velocities from 13.4 to 40.2 m/s. Peak force increased linearly with increasing ball model stiffness. Impulse of impact increased linearly with ball mass. Coefficient of restitution (COR) decreased with increasing velocity in all balls tested, although the rate of decrease varied among the different ball models. Neither quasi-static energy loss nor hysteresis was useful in predicting dynamic energy loss (COR2). The results between traditional and modified balls varied widely in both static and dynamic tests, which is related to the large differences in mass and stiffness between the two groups. These results indicate that static parameters can be useful in predicting some dynamic impact variables, potentially reducing the complexity of testing. However, some variables, such as ball COR, could not be predicted with the static tests performed in this study.

Restricted access

Weighted Baseball Training Affects Arm Speed Without Increasing Elbow and Shoulder Joint Kinetics

Michael E. O’Connell, Kyle E. Lindley, John O. Scheffey, Alex Caravan, Joseph A. Marsh, and Anthony C. Brady

objects that are heavier or lighter than the competition weight specification. The competition weight of a baseball is 5 ounces (142 g), so underload implements are thrown objects that weigh less than 142 g while overload implements are thrown objects that weigh more than 142 g. The concept of overload

Restricted access

Batting Cage Performance of Wood and Nonwood Youth Baseball Bats

Joseph J. Crisco, Michael J. Rainbow, Joel B. Schwartz, and Bethany J. Wilcox

The purpose of this study was to examine the batting cage performance of wood and nonwood baseball bats used at the youth level. Three wood and ten nonwood bats were swung by 22 male players (13 to 18 years old) in a batting cage equipped with a 3-dimensional motion capture (300 Hz) system. Batted ball speeds were compared using a one-way ANOVA and bat swing speeds were analyzed as a function of bat moment of inertia by linear regression. Batted ball speeds were significantly faster for three nonwood bat models (P < .001), significantly slower for one nonwood model, and not different for six nonwood bats when compared with wood bats. Bat impact speed significantly (P < .05) decreased with increasing bat moment of inertia for the 13-, 14-, and 15-year-old groups, but not for the other age groups. Ball-bat coefficients of restitution (BBCOR) for all nonwood were greater than for wood, but this factor alone did not correlate with bat performance. Our findings indicate that increases in BBCOR and swing speed were not associated with faster batted ball speeds for the bats studied whose moment of inertia was substantially less than that of a wood bat of similar length.

Restricted access

Identification of Release Conditions and Aerodynamic Forces in Pitched-Baseball Trajectories

LeRoy W. Alaways, Sean P. Mish, and Mont Hubbard

Pitched-baseball trajectories were measured in three dimensions during competitions at the 1996 Summer Olympic games using two high-speed video cameras and standard DLT techniques. A dynamic model of baseball flight including aerodynamic drag and Magnus lift forces was used to simulate trajectories. This simulation together with the measured trajectory position data constituted the components of an estimation scheme to determine 8 of the 9 release conditions (3 components each of velocity, position, and angular velocity) as well as the mean drag coefficient CD and terminal conditions at home plate. The average pitch loses 5% of its initial velocity during flight. The dependence of estimated drag coefficient on Reynolds number hints at the possibility of the drag crisis occurring in pitched baseballs. Such data may be used to quantify a pitcher’s performance (including fastball speed and amount of curve-ball break) and its improvement or degradation over time. It may also be used to understand the effects of release parameters on baseball trajectories.

Restricted access

Comparison of Kinematic and Temporal Parameters between Different Pitch Velocity Groups

Tomoyuki Matsuo, Rafael F. Escamilla, Glenn S. Fleisig, Steven W. Barrentine, and James R. Andrews

This study investigated differences in kinematic and temporal parameters between two velocity groups of baseball pitchers. Data were collected from 127 healthy college and professional baseball pitchers. Those who threw faster than 1 SD above the sample mean (>38.0 m/s) were assigned to the high velocity group (n = 29), and those who threw slower than 1 SD below the sample mean (<34.2 m/s) were assigned to the low velocity group (n = 23). Twelve kinematic parameters and 9 temporal parameters were measured and analyzed. The pattern of lead knee movement was also investigated. Maximum shoulder external rotation, forward trunk tilt at the instant of ball release, and lead knee extension angular velocity at the instant of ball release were significantly greater in the high velocity group. Maximum lead knee flexion angular velocity was significantly greater in the low velocity group. Seventy percent of the high velocity group showed knee extension during the approach to ball release, whereas the low velocity group showed a variety of knee movement patterns involving less knee extension and more knee flexion. The greater shoulder external rotation in the high velocity group produced an increased range of motion during the acceleration phase.

Full access

Dr. Richard C. Nelson: A Water Tower Remembrance

Robert Shapiro

I graduated Brooklyn College in January 1972 with a degree in health and physical education. I expected to teach physical education and coach baseball. Unfortunately, no teaching jobs in physical education were open in New York City in the spring 1972. Instead, I became the poster boy for teaching

Restricted access

Modeling Deformation Behavior of the Baseball

Rochelle Llewelyn Nicholls, Karol Miller, and Bruce C. Elliott

Regulating ball response to impact is one way to control ball exit velocity in baseball. This is necessary to reduce injuries to defensive players and maintain the balance between offense and defense in the game. This paper presents a model for baseball velocity-dependent behavior. Force-displacement data were obtained using quasi-static compression tests to 50% of ball diameter (n = 70 baseballs). The force-displacement curves for a very stiff baseball (Model B) and a softer type (Model C) were characterized by a Mooney-Rivlin model using implicit finite element analysis (ANSYS software, version 6.1). Agreement between experimental and numerical results was excellent for both Model B (C10 = 0, C01 = 3.7e6 Pa) and Model C (C10 = 0, C01 = 2.6e6 Pa). However, this material model was not available in the ANSYS/LSDYNA explicit dynamic software (version 6.1) used to quantify the transient behavior of the ball. Therefore the modeling process was begun again using a linear viscoelastic material. G∞, the long-term shear modulus of the material, was determined by the same implicit FEA procedure. Explicit FEA was used to quantify the time-dependent response of each ball in terms of instantaneous shear modulus (G0) and a decay term (β). The results were evaluated with respect to published experimental data for the ball coefficient of restitution at five velocities (13.4–40.2 ms–1) and were in agreement with the experimental values. The model forms the basis for future research on baseball response to impact with the bat.

Restricted access

Shoulder External Over Internal Rotation Ratio Is Related to Biomechanics in Collegiate Baseball Pitching

Hannah L. Stokes, Koco Eaton, and Naiquan Zheng

Proper throwing mechanics in baseball pitching are important to improve performance and reduce injuries. Baseball pitching is very demanding on the shoulder; the shoulder internally rotates at about 7000° per second and the force applied is greater than 800 N. 1 Throwing arm injuries are prevalent

Restricted access

A Comparison of Age Level on Baseball Hitting Kinematics

Rafael F. Escamilla, Glenn S. Fleisig, Coop DeRenne, Marcus K. Taylor, Claude T. Moorman III, Rodney Imamura, Edward Barakatt, and James R. Andrews

We propose that learning proper hitting kinematics should be encouraged at a young age during youth baseball because this may help reinforce proper hitting kinematics as a player progresses to higher levels of baseball in their adult years. To enhance our understanding between youth and adult baseball hitting, kinematic and temporal analyses of baseball hitting were evaluated with a high-speed motion analysis system between 12 skilled youth and 12 skilled adult baseball players. There were only a small number of temporal differences between youth and adult hitters, with adult hitters taking significantly greater time than youth hitters during the stride phase and during the swing. Compared with youth hitters, adult hitters a) had significantly greater (p < .01) lead knee flexion when the hands started to move forward; b) flexed the lead knee over a greater range of motion during the transition phase (31° versus 13°); c) extended the lead knee over a greater range of motion during the bat acceleration phase (59° versus 32°); d) maintained a more open pelvis position at lead foot off ground; and e) maintained a more open upper torso position when the hands started to move forward and a more closed upper torso position at bat-ball contact. Moreover, adult hitters had greater peak upper torso angular velocity (857°/s versus 717°/s), peak left elbow extension angular velocity (752°/s versus 598°/s), peak left knee extension angular velocity (386°/s versus 303°/s), and bat linear velocity at bat-ball contact (30 m/s versus 25 m/s). The numerous differences in kinematic and temporal parameters between youth and adult hitters suggest that hitting mechanics are different between these two groups.

Restricted access

Biomechanical Comparison between Elite Female and Male Baseball Pitchers

Yungchien Chu, Glenn S. Fleisig, Kathy J. Simpson, and James R. Andrews

The purpose of the current study was to identify the biomechanical features of elite female baseball pitching. Kinematics and kinetics of eleven elite female baseball pitchers were reported and compared with eleven elite male pitchers. Results suggested that females share many similarities with males in pitching kinematics, with a few significant differences. Specifically, at the instant of stride foot contact, a female pitcher had a shorter and more open stride and less separation between pelvis orientation and upper torso orientation. From foot contact to ball release, a female pitcher produced lower peak angular velocity for throwing elbow extension and stride knee extension. Ball velocity was lower for the female. Foot contact to ball release took more time for a female pitcher. Maximal proximal forces at the shoulder and elbow joints were less for a female pitcher.