Search Results

You are looking at 1 - 3 of 3 items for :

  • "bioinformational theory" x
  • Psychology and Behavior in Sport/Exercise x
  • Refine by Access: All Content x
Clear All
Restricted access

Dave Smith and Dave Collins

The aim of these two studies was to examine the application of Lang’s (1979, 1985) bioinformational theory to the mental practice (MP) of a strength task, the maximal voluntary contraction of the abductor digiti minimi, and the MP of a computerized barrier knockdown task. Study 1 divided 18 males into three groups: a physical practice (PP) group; a stimulus and response proposition mental practice (SRP) group; and a stimulus proposition mental practice (SP) group. Each participant either physically or mentally practiced 40 contractions twice a week for 3 weeks, and electroencephalograms (EEGs) were recorded during testing sessions. All three groups significantly increased abduction strength, but there were no significant between-group differences in the magnitude of the improvements. In addition, late contingent negative variation (CNV) waves were apparent prior to both real and imagined movements in all conditions. Study 2 allocated 24 participants to PP, SRP, SP, and control groups. Participants performed 120 imaginary or actual barrier knockdown trials, with EEGs recorded as in Study 1. A Group × Test ANOVA for movement time revealed that the PP and SRP groups improved to a significantly greater degree than the SP and control groups. Also, the late CNV was observed prior to real and imagined movement in the SRP group, but not prior to imagined movement in the SP group. These results support bioinformational theory with respect to cognitively oriented motor tasks, but not strength tasks.

Restricted access

Sarah E. Williams, Sam J. Cooley, and Jennifer Cumming

This study aimed to test Lang’s bioinformational theory by comparing the effects of layered stimulus and response training (LSRT) with imagery practice on improvements in imagery ability and performance of a motor skill (golf putting) in 24 novices (age, M = 20.13 years; SD = 1.65; 12 female) low in imagery ability. Participants were randomly assigned to a LSRT (introducing stimulus and response propositions to an image in a layered approach), motor imagery (MI) practice, or visual imagery (VI) practice group. Following baseline measures of MI ability and golf putting performance, the LSRT and MI practice groups imaged successfully performing the golf putting task 5 times each day for 4 days whereas the VI practice group imaged the ball rolling into the hole. Only the LSRT group experienced an improvement in kinesthetic MI ability, MI ability of more complex skills, and actual golf putting performance. Results support bioinformational theory by demonstrating that LSRT can facilitate visual and kinesthetic MI ability and reiterate the importance of imagery ability to ensure MI is an effective prime for movement execution.

Restricted access

Jeffrey E. Hecker and Linda M. Kaczor

Bioinformational theory has been proposed by Lang (1979a), who suggests that mental images can be understood as products of the brain's information processing capacity. Imagery involves activation of a network of propositionally coded information stored in long-term memory. Propositions concerning physiological and behavioral responses provide a prototype for overt behavior. Processing of response information is associated with somatovisceral arousal. The theory has implications for imagery rehearsal in sport psychology and can account for a variety of findings in the mental practice literature. Hypotheses drawn from bioinformational theory were tested. College athletes imagined four scenes during which their heart rates were recorded. Subjects tended to show increases in heart rate when imagining scenes with which they had personal experience and which would involve cardiovascular activation if experienced in real life. Nonsignificant heart rate changes were found when the scene involved activation but was one with which subjects did not have personal experience.