Search Results

You are looking at 1 - 10 of 220 items for :

  • Journal of Applied Biomechanics x
  • Refine by Access: All Content x
Clear All
Restricted access

Force Measurements during Cross-Country Skiing

Paavo V. Komi

To understand cross-country (X-C) siding it is important to record and identity forces of skis and poles separately and together. They both contribute to the forward progression, but their functional significance may be more complex than that of the ground reaction forces in running and walking. This report presents two methods to record forces on skis and poles during normal X-C skiing. A long force-platform system with four rows of 6-m long plates is placed under the snow track for recording of Fz and Fy forces of each ski and pole separately. This system is suitable especially for the study of diagonal technique under more strict experimental conditions. The second system consists of small lightweight Fz and Fy component force plates which are installed under the boot and binding. These plates can be easily changed from one ski to another, and telemetric recording allows free skiing over long distances and with different skiing techniques, including skating. The presentation emphasizes the integrated use of either system together with simultaneous cinematographic and electromyographic recordings.

Restricted access

Drag Area of a Cross-Country Skier

Erik Spring, Sauli Savolainen, Jari Erkkilä, Tuomo Hämäläinen, and Pekka Pihkala

The drag area CDA of three male cross-country skiers as a function of their velocity was determined from their retardation when they were gliding on roller-skis over a horizontal smooth asphalt surface in a subway. The results show that CDA is a slightly decreasing function of the skier’s velocity in the velocity range 5–11 m/s. The drag area of a skier was found to be 0.27 ± 0.03 m2 in a semi-squatting posture and 0.65 ± 0.05 m2 in an upright posture for an average size skier (weight 80 kg, height 1.75 m). The difference in the drag area between a normal outdoor suit and a tight-fitting ski suit was found to be as much as 30%. A skier keeping pace with a skier ahead will gain a reduction in drag of about 25 %. The leading skier in this study was found to have his drag reduced by approximately 3 % compared to what it would be if there were no skier pacing up with him. The skier behind hinders the skier ahead from generating to a full extent the vortexes behind himself or herself. These reductions are of course strongly dependent on the distance between the skiers.

Restricted access

Gait Dynamics on a Cross-Slope Walking Surface

Philippe C. Dixon and David J. Pearsall

The purpose of this study was to determine the effect of cross-slope on gait dynamics. Ten young adult males walked barefoot along an inclinable walkway. Ground reaction forces (GRFs), lower-limb joint kinematics, global pelvis orientation, functional leg-length, and joint reaction moments (JRMs) were measured. Statistical analyses revealed differences across limbs (up-slope [US] and down-slope [DS]) and inclinations (level; 0°; and cross-sloped, 6°). Adaptations included increases of nearly 300% in mediolateral GRFs (p < .001), functional shortening the US-limb and elongation of the DS-limb (p < .001), reduced step width (p = .024), asymmetrical changes in sagittal kinematics and JRM, and numerous pronounced coronal plane differences including increased US-hip adduction (and adductor moment) and decreased DS-hip adduction (and adductor moment). Data suggests that modest cross-slopes can induce substantial asymmetrical changes in gait dynamics and may represent a physical obstacle to populations with restricted mobility.

Restricted access

Relationship between Glide Speed and Olympic Cross-Country Ski Performance

Glenn M. Street and Robert W. Gregory

While the scientific literature has confirmed the importance of high maximal aerobic power to successful cross-country skiing performance, the same cannot be said of skiing technique or gliding characteristics of skis. The purpose of this study was to determine whether glide speed was related to Olympic race performance. Male competitors in the 50-km freestyle event were videotaped during the 1992 Winter Olympic Games. Glide speeds of the entire field were measured through a 20-m flat section at the bottom of a 150-m, 12° downhill. A significant correlation (r = -.73) was found between finish time and glide speed, showing that the more successful competitors tended to have faster glide speeds through this section of the course. A predictive model of glide speed suggested that the faster glide speeds were due primarily to differences in friction. There was little evidence to suggest that differences in air drag, body mass, or initial speed accounted for the major differences in glide speeds.

Restricted access

Tendon Cross-Sectional Area is Not Associated with Muscle Volume

Atsuki Fukutani and Toshiyuki Kurihara

Recent studies have reported that resistance training increases the cross-sectional areas (CSAs) of tendons; however, this finding has not been consistently observed across different studies. If tendon CSA increases through resistance training, resistance-trained individuals should have larger tendon CSAs as compared with untrained individuals. Therefore, in the current study, we aimed to investigate whether resistance training increases tendon CSAs by comparing resistance-trained and untrained individuals. Sixteen males, who were either body builders or rugby players, were recruited as the training group, and 11 males, who did not participate in regular resistance training, were recruited into the control group. Tendon CSAs and muscle volumes of the triceps brachii, quadriceps femoris, and triceps surae were calculated from images obtained by using magnetic resonance imaging. The volumes of the 3 muscles were significantly higher in the training group than in the control group (P < .001 for all muscles). However, a significant difference in tendon CSAs was found only for the distal portion of the triceps surae tendon (P = .041). These findings indicate that tendon CSA is not associated with muscle volume, suggesting that resistance training does not increase tendon CSA.

Restricted access

Kinematic Analysis of Alternate Stride Skating in Cross-Country Skiing

Gerald A. Smith, Jill McNitt-Gray, and Richard C. Nelson

Cross-country ski technique is undergoing rapid evolution. Alternate stride skating was the dominant technique during the 1985–86 racing season (double poling is synchronized with the “strong” side skate; no poling occurs with the “weak” side skate). High-speed films were made of elite male racers at the Holmenkollen World Cup races, Oslo, Norway (March 1986), skating up a 7° hill. Digitized data were filtered and processed to determine three-dimensional coordinates throughout a complete skating cycle. Ten skiers were analyzed, representing a range of performances. Over the 10-km race length, cycle rates for all skiers were similar; however, cycle lengths were significantly related to cycle velocity. The correlation between cycle velocity and length was r = 0.85. Ski angles were found to be asymmetrical. Weak-side ski angles were negatively related to cycle velocity; strong-side ski angles were similar for all skiers. Center of mass (CM) position throughout the cycle exhibited characteristic differences between faster and slower skiers. CM velocity vector direction was related to cycle velocity. Thus, faster skiers tended to maintain CM motion more nearly aligned with the forward direction.

Restricted access

Quadrupedal Locomotion–Respiration Entrainment and Metabolic Economy in Cross-Country Skiers

Kevin Boldt, Anthony Killick, and Walter Herzog

A 1:1 locomotion–respiration entrainment is observed in galloping quadrupeds, and is thought to improve running economy. However, this has not been tested directly in animals, as animals cannot voluntarily disrupt this entrainment. The purpose of this study was to evaluate metabolic economy in a human gait involving all four limbs, cross-country skiing, in natural entrainment and forced nonentrainment. Nine elite cross-country skiers roller skied at constant speed using the 2-skate technique. In the first and last conditions, athletes used the natural entrained breathing pattern: inhaling with arm recovery and exhaling with arm propulsion, and in the second condition, the athletes disentrained their breathing pattern. The rate of oxygen uptake (VO2) and metabolic rate (MR) were measured via expired gas analysis. Propulsive forces were measured with instrumented skis and poles. VO2 and MR increased by 4% and 5% respectively when skiers used the disentrained compared with the entrained breathing pattern. There were no differences in ski or pole forces or in timing of the gait cycle between conditions. We conclude that breathing entrainment reduces metabolic cost of cross-country skiing by approximately 4%. Further, this reduction is likely a result of the entrainment rather than alterations in gait mechanics.

Restricted access

Differences in Body Segment Energy Utilization between World-Class and Recreational Cross-Country Skiers

Robert Norman, Graham Caldwell, and Paavo Komi

Differences in the utilization of body segment movements between world-class and recreational cross-country skiers which result in a longer stride of the elite were studied using mechanical energy analyses. Nine world-class racers and six recreational skiers (novices) were filmed, the latter while they executed their fastest possible stable diagonal stride on a level track, and the former during competition. A 15-member linked segment model was digitized, the coordinate data filtered at 4.5 Hz and body segment energy curves; mechanical work output and mechanical energy transfers were calculated using the method described by Pierrynowski, Winter, and Norman (1980). The elite skiers exhibited larger exchanges between potential and kinetic energy in all segments during swing phases and all but the upper arm segment during pushing phases. Step-wise discriminant function analysis showed significant differences in the swinging foot, pushing foot, and pushing shank. The differences appear to be largely attributable to the higher leg swings of the experts, who prolong the glide and enhance step length, probably at a relatively lower metabolic cost by exploiting gravity to augment muscular force by generating pendulum-like movements.

Restricted access

The Use of Normalized Cross-Correlation Analysis for Automatic Tendon Excursion Measurement in Dynamic Ultrasound Imaging

Stephen J. Pearson, Tim Ritchings, and Ahmad S.A. Mohamed

The work describes an automated method of tracking dynamic ultrasound images using a normalized cross-correlation algorithm, applied to the patellar and gastrocnemius tendon. Displacement was examined during active and passive tendon excursions using B-mode ultrasonography. In the passive test where two regions of interest (2-ROI) were tracked, the automated tracking algorithm showed insignificant deviations from relative zero displacement for the knee (0.01 ± 0.04 mm) and ankle (–0.02 ± 0.04 mm) (P > .05). Similarly, when tracking 1-ROI the passive tests showed no significant differences (P > .05) between automatic and manual methods, 7.50 ± 0.60 vs 7.66 ± 0.63 mm for the patellar and 11.28 ± 1.36 vs 11.17 ± 1.35 mm for the gastrocnemius tests. The active tests gave no significant differences (P > .05) between automatic and manual methods with differences of 0.29 ± 0.04 mm for the patellar and 0.26 ± 0.01 mm for the gastrocnemius. This study showed that automatic tracking of in vivo displacement of tendon during dynamic excursion under load is possible and valid when compared with the standardized method. This approach will save time during analysis and enable discrete areas of the tendon to be examined.

Restricted access

Torso and Hip Muscle Activity and Resulting Spine Load and Stability while Using the ProFitter 3-D Cross Trainer

Priyanka Banerjee, Stephen H.M Brown, Samuel J. Howarth, and Stuart M. McGill

The ProFitter 3-D Cross Trainer is a labile surface device used in the clinic and claimed to train spine stability. The purpose of this study was to quantify the spine mechanics (compression and shear forces and stability), together with muscle activation mechanics (surface electromyography) of the torso and hip, during three ProFitter exercises. Trunk muscle activity was relatively low while exercising on the device (<25%MVC). Gluteus medius activity was phasic with the horizontal sliding position, especially for an experienced participant. Sufficient spinal stability was achieved in all three exercise conditions. Peak spinal compression values were below 3400 N (maximum 3188 N) and peak shear values were correspondingly low (under 500 N). The exercises challenge whole-body dynamic balance while producing very conservative spine loads. The motion simultaneously integrates hip and torso muscles in a way that appears to ensure stabilizing motor patterns in the spine. This information will assist with clinical decision making about the utility of the device and exercise technique in rehabilitation and training programs.