–student research partnerships have potential extrinsic (eg, acceleration in research productivity 5 – 7 ) and intrinsic (eg, motivation and enjoyment 6 , 8 ) benefits for staff and institutions, this study will focus on the experiences of students in such partnerships. Several frameworks have presented the ways in
Search Results
Experiences of Undergraduates Publishing Biomechanics Research
Stuart A. McErlain-Naylor
Decision Making and Experience Level Influence Frontal Plane Knee Joint Biomechanics During a Cutting Maneuver
Kristof Kipp, Tyler N. Brown, Scott G. McLean, and Riann M. Palmieri-Smith
The purpose of this study was to examine the combined impact of experience and decision making on frontal plane knee joint biomechanics during a cutting maneuver. Kinematic and kinetic data were collected from 12 recreationally active and 18 NCAA Division I female athletes during execution of anticipated and unanticipated single-leg land-and-cut maneuvers. Knee joint abduction angles and external knee joint abduction torques were calculated and discrete peak stance-phase variables were extracted. Angle and torque time-series data were also submitted to separate functional data analyses. Variables derived from the functional data analyses indicated that decision making influenced knee abduction angle and torque time series in the recreational group only. Specifically, these variables pointed to greater knee abduction at the end of stance as well as a greater, albeit delayed peak in knee abduction torque at the beginning of landing in the recreational athletes during the unanticipated condition. In addition, the recreational athletes displayed greater discrete peak knee abduction angles than the Division I athletes regardless of condition. Discrete peak knee abduction torque did not differ between groups or conditions.
Interactive Digital Experience as an Alternative Laboratory (IDEAL): Creative Investigation of Forensic Biomechanics
Valerie A. Troutman and Michele J. Grimm
, navigated, and explored the content based on their personal interest and preference. Our long-term goal of developing the Interactive Digital Experience as an Alternative Laboratory (IDEAL) is to facilitate the implementation of new, interactive units within the mechanical and biomedical engineering
A Biomechanical Assessment of the Sliding Motion of Curling Delivery in Elite and Subelite Curlers
Kyoung-Seok Yoo, Hyun-Kyung Kim, and Jin-Hoon Park
The present study examined the technical characteristics of sliding performance from push-off until stone release in curling delivery. Five elite performance level curlers (> 7 years experience) and five subelite level curlers (< 3 years experience) were analyzed during the action of delivery of a curling stone. The joint angles, angular velocities, and moments of the body center of mass (COM) were determined based on three-dimensional kinematic data. The plantar pressure data were measured using a validated in-shoe system. The results indicated that the gliding time and horizontal velocity of the mass center of the body during the sliding phase were not significantly different between the elite and subelite groups. However, there were significant differences in the gliding distance and the rate of changes in velocity profiles of body COM between the two groups. The moment of the body COM from its relative position to the ankle of the support limb in the anterior/posterior direction was positive in elite curlers and negative in subelite curlers. In addition, larger ankle dorsiflexion and greater contact area of the sliding foot were observed in elite curlers. These data suggest a superior ability of elite curlers to maintain a regulated movement speed and balance control during the performance of a curling stone delivery.
Differences in Batted Ball Speed with Wood and Aluminum Baseball Bats: A Batting Cage Study
Richard M. Greenwald, Lori H. Penna, and Joseph J. Crisco
Differences in the performance of wood and metal baseball bats, measured as a function of batted ball speed, were quantified in a batting cage study. Two wood and five metal baseball bat models were studied with 19 players of various levels of experience ranging from high school to professional. Batted ball speeds from 538 hits were computed from high-speed 3-D ball position data collected with a commercially available system. In general, metal bats had significantly higher batted ball speeds than wood bats. Of the five metal bat models studied, one outperformed all other models and one bat was most similar to wood bats. The average difference in batted ball speed between wood bats and the highest performing metal bat was approximately 9 mph. Maximum batted ball speeds of 101 and 106 mph were measured for wood and metal bats, respectively. Increased skill level significantly increased the maximum batted ball speeds generated independent of bat model. Players of all experience levels were able to generate batted ball speeds in excess of 100 mph. While the results of this study are limited to the specific bats tested, this is the first study to measure and report differences in batted ball speeds among wood and metal bats.
The Role of Running Mileage on Coordination Patterns in Running
Katherine A. Boyer, Julia Freedman Silvernail, and Joseph Hamill
Injury rates among runners are high, with the knee injured most frequently. The interaction of running experience and running mechanics is not well understood but may be important for understanding relative injury risk in low vs higher mileage runners. The study aim was to apply a principal component analysis (PCA) to test the hypothesis that differences exist in kinematic waveforms and coordination between higher and low mileage groups. Gait data were collected for 50 subjects running at 3.5 m/s assigned to either a low (< 15 miles/wk) or higher (> 20 miles/wk, 1 year experience) mileage group. A PCA was performed on a matrix of trial vectors of all force, joint kinematic, and center of pressure data. The projection of the subjects’ trial vectors onto the linear combination of PC7, PC10, PC13, and PC19 was significantly different between the higher and lower mileage groups (d = 0.63, P = .012). This resultant PC represented variation in transverse plane pelvic rotation, hip internal rotation, and hip and knee abduction and adduction angles. These results suggest the coordination of lower extremity segment kinematics is different for lower and higher mileage runners. The adopted patterns of coordinated motion may explain the lower incidence of overuse knee injuries for higher mileage runners.
Persons With Multiple Sclerosis Show Altered Joint Kinetics During Walking After Participating in Elliptical Exercise
Jessie M. Huisinga, Kendra K. Schmid, Mary L. Filipi, and Nicholas Stergiou
Patients with multiple sclerosis (MS) experience abnormal gait patterns and reduced physical activity. The purpose of this study was to determine if an elliptical exercise intervention for patients with MS would change joint kinetics during gait toward healthy control values. Gait analysis was performed on patients with MS (n = 24) before and after completion of 15 sessions of supervised exercise. Joint torques and powers were calculated, while also using walking velocity as a covariate, to determine the effects of elliptical exercise on lower extremity joint kinetics during gait. Results show that elliptical exercise significantly altered joint torques at the ankle and hip and joint powers at the ankle during stance. The change in joint power at the ankle indicates that, after training, patients with MS employed a walking strategy that is more similar to that of healthy young adults. These results support the use of elliptical exercise as a gait training tool for patients with MS.
A Profile of Ground Reaction Forces in Professional Basketball
Irene S. McClay, John R. Robinson, Thomas P. Andriacchi, Edward C Frederick, Ted Gross, Philip Martin, Gordon Valiant, Keith R. Williams, and Peter R. Cavanagh
Basketball is a sport that involves multiple impacts with the ground through a variety of moves such as running Jumping, and cutting. Repetitive impacts have been associated with stress-related injuries in other sports such as running. The purpose of this investigation was to gain an understanding of the typical stresses the body experiences during common basketball moves. To this end, the ground reaction forces from 24 players from five professional basketball teams were studied. In addition, a game analysis was performed to determine the frequency of selected moves. These data indicated that certain common movements, such as jump landings and shuffling, resulted in absolute and relative forces much greater than many of those reported previously in studies of other sports. These movements were also identified in a companion paper as being associated with large angular excursions and velocities. Findings are discussed with respect to injury risks, and suggestions for future study are made.
Kinematics and Impulse Characteristics of Drop Landings from Three Heights
Jill L. McNitt-Gray
During a landing impact, the human body is exposed to large forces and moments that create the potential for injury. To determine the effect of impact velocity and landing experience on the strategy selected, the preferred landing strategies used by male collegiate gymnasts and recreational athletes from three drop heights were characterized using mechanical descriptors. Kinematic and reaction force data were acquired simultaneously using highspeed film and a force plate. Reaction forces and lower extremity joint motion were used to characterize the strategies. Results indicated that statistically significant increases in joint flexion (with the exception of ankle joint flexion), angular velocity, and impact force resulted as impact velocity increased. Gymnasts and recreational athletes demonstrated similar adjustment patterns to increases in landing impact velocities; however, significant differences in degree of joint flexion, total landing phase time, and relative adjustments over impact velocity conditions were found.
Investigation of Spinal Posture Signatures and Ground Reaction Forces During Landing in Elite Female Gymnasts
Melanie Wade, Amity Campbell, Anne Smith, Joanne Norcott, and Peter O’Sullivan
The link between static and dynamic landing lumbar postures, when gymnasts are exposed to large ground reaction forces, has not been established. This investigation aimed to (a) determine if a relationship exists between sagittal static and dynamic landing lumbar spine angles at peak ground reaction force (GRF) and (b) quantify how close to end-range postures the gymnasts were at landing peak GRF. Twenty-one female gymnasts’ upper and lower lumbar spine angles were recorded: statically in sitting and standing, during landing of three gymnastic skills, and during active end-range lumbar flexion. Pearson’s correlations were used to investigate relationships between the angles in different postures. Significant correlations (r = .77–.89, p < .01) were found between all the static/dynamic postures in the lower lumbar spine angle, while fewer and less significant upper lumbar spine correlations were reported. Thirty percent of gymnasts landed a backsault with their lower lumbar spine flexed beyond their active end-range while experiencing GRF 6.8–13.3 times their body weight. These results inform low back pain prevention and management strategies in this population and highlight areas for future research.