Search Results

You are looking at 1 - 10 of 41 items for :

  • "female athletes" x
  • Journal of Applied Biomechanics x
  • Refine by Access: All Content x
Clear All
Restricted access

Preferential Quadriceps Activation in Female Athletes With Incremental Increases in Landing Intensity

Kevin R. Ford, Gregory D. Myer, Laura C. Schmitt, Timothy L. Uhl, and Timothy E. Hewett

The purpose of this study was to identify alterations in preparatory muscle activation patterns across different drop heights in female athletes. Sixteen female high school volleyball players performed the drop vertical jump from three different drop heights. Surface electromyography of the quadriceps and hamstrings were collected during the movement trials. As the drop height increased, muscle activation of the quadriceps during preparatory phase also increased (p < .05). However, the hamstrings activation showed no similar increases relative to drop height. Female athletes appear to preferentially rely on increased quadriceps activation, without an increase in hamstrings activation, with increased plyometric intensity. The resultant decreased activation ratio of the hamstrings relative to quadriceps before landing may represent altered dynamic knee stability and may contribute to the increased risk of ACL injury in female athletes.

Restricted access

Lower Extremity Biomechanics Differ in Prepubescent and Postpubescent Female Athletes during Stride Jump Landings

Chris J. Hass, Elizabeth A. Schick, John W. Chow, Mark D. Tillman, Denis Brunt, and James H. Cauraugh

Epidemiological evidence suggests the incidence of injury in female athletes is greater after the onset of puberty and that landing from a jump is a common mechanism of knee injury. This investigation compared lower extremity joint kinematics and joint resultant forces and moments during three types of stride jump (stride jump followed by a static landing; a ballistic vertical jump; and a ballistic lateral jump) between pre- and postpubescent recreational athletes to provide some insight into the increased incidence of injury. Sixteen recreationally active postpubescent women (ages 18–25 years) and 16 recreationally active prepubescent girls (ages 8–11 years) participated in this study. High speed 3D videography and force plate data were used to record each jumper’s performance of the stride jumps, and an inverse dynamic procedure was used to estimate lower extremity joint resultant forces and moments and power. These dependent variables were submitted to a 2 × 3 (Maturation Level × Landing Sequence) MANOVA with repeated measures on the last factor. The findings indicated that postpubescents landed with the knee more extended (4.4°) and had greater extension moments (approximately 30% greater hip and knee extension moments) and powers (40% greater knee power). Further, the post-pubescent athletes had greater knee anterior/posterior forces as well as medio-lateral resultant forces. The differences found between the two groups suggest there may be anatomical and physiological changes with puberty that lead to differences in strength or neuromuscular control which influence the dynamic restraint system in these recreational athletes. A combination of these factors likely plays a role in the increased risk of injury in postpubescent females.

Restricted access

Vertical Jump Biomechanics Altered With Virtual Overhead Goal

Kevin R. Ford, Anh-Dung Nguyen, Eric J. Hegedus, and Jeffrey B. Taylor

Virtual environments with real-time feedback can simulate extrinsic goals that mimic real life conditions. The purpose was to compare jump performance and biomechanics with a physical overhead goal (POG) and with a virtual overhead goal (VOG). Fourteen female subjects participated (age: 18.8 ± 1.1 years, height: 163.2 ± 8.1 cm, weight 63.0 ± 7.9 kg). Sagittal plane trunk, hip, and knee biomechanics were calculated during the landing and take-off phases of drop vertical jump with different goal conditions. Repeated-measures ANOVAs determined differences between goal conditions. Vertical jump height displacement was not different during VOG compared with POG. Greater hip extensor moment (P < .001*) and hip angular impulse (P < .004*) were found during VOG compared with POG. Subjects landed more erect with less magnitude of trunk flexion (P = .002*) during POG compared with VOG. A virtual target can optimize jump height and promote increased hip moments and trunk flexion. This may be a useful alternative to physical targets to improve performance during certain biomechanical testing, screening, and training conditions.

Restricted access

Vertical Ground Reaction Forces are Associated with Pain and Self-Reported Functional Status in Recreational Athletes with Patellofemoral Pain

Danilo de Oliveira Silva, Ronaldo Briani, Marcella Pazzinatto, Deisi Ferrari, Fernando Aragão, and Fábio de Azevedo

Individuals with patellofemoral pain (PFP) use different motor strategies during unipodal support in stair climbing activities, which may be assessed by vertical ground reaction force parameters. Thus, the aims of this study were to investigate possible differences in first peak, valley, second peak, and loading rate between recreational female athletes with PFP and pain-free athletes during stair climbing in order to determine the association and prediction capability between these parameters, pain level, and functional status in females with PFP. Thirty-one recreational female athletes with PFP and 31 pain-free recreational female athletes were evaluated with three-dimensional kinetics while performing stair climbing to obtain vertical ground reaction force parameters. A visual analog scale was used to evaluate the usual knee pain. The anterior knee pain scale was used to evaluate knee functional score. First peak and loading rate were associated with pain (r = .46, P = .008; r = .56, P = .001, respectively) and functional limitation (r = .31, P = .049; r = −.36, P = .032, respectively). Forced entry regression revealed the first peak was a significant predictor of pain (36.5%) and functional limitation (28.7%). Our findings suggest that rehabilitation strategies aimed at correcting altered vertical ground reaction force may improve usual knee pain level and self-reported knee function in females with PFP.

Restricted access

Lower Extremity Kinematics of a Single-Leg Squat with an Orthotic in Male and Female Collegiate Athletes

Michael F. Joseph, Kristin L. Holsing, and David Tiberio

Kinematic differences have been linked to the gender discrepancies seen in knee injuries. A medially posted orthotic decreases frontal and transverse plane motions in the lower extremity during ambulation, squatting and landing. This study investigated the effect of a medial post on amount and timing of lower extremity motions during a single-leg squat in male and female athletes. We hypothesized there would be differences in these kinematic variables dependent upon sex and post conditions. Twenty male and female athletes performed single-leg squats with and without a five degree full-length medial post. Maximum joint angles were analyzed using a two-way, repeated-measures analysis of variance to determine if the differences created by post condition were statistically significant, whether there were gender differences, or interactions. Differences in maximum motion values and the time at which they occurred were found between men and women at the hip, knee and ankle. The post decreased all frontal plane measures in both sexes and resulted in earlier attainment of maximum ankle eversion and delayed maximum knee valgus. A medially posted orthotic may be beneficial not only in limiting motion, but in affecting the time in which stressful motions occur.

Restricted access

Techniques Used in the Transition from Approach to Takeoff in the Long Jump

James G. Hay and John A. Miller Jr.

The purposes of this study were (a) to describe the techniques used by elite female athletes during the transition from approach to takeoff in the long jump and (b) to determine which characteristics were significantly related to the officially recorded distance of the jump. The subjects were the 12 finalists in the Women's Long Jump at the 1984 Olympic Games. A motion-picture camera placed with its optical axis at right angles to the runway was used to record the performances of the subjects. Means and standard deviations of the variables identified in a theoretical model and correlations between these variables and the distance of the jump were computed. Significant correlations revealed that the less the downward velocity at touchdown at the end of the third-last stride, and the less this velocity is changed by the vertical forces transmitted via the supporting foot, and the shorter the duration of the next flight phase, the greater the distance of the jump.

Restricted access

Comparison of Knee Mechanics Among Risky Athletic Motions for Noncontact Anterior Cruciate Ligament Injury

Hidenori Tanikawa, Hideo Matsumoto, Ikki Komiyama, Yoshimori Kiriyama, Yoshiaki Toyama, and Takeo Nagura

It has been suggested that noncontact anterior cruciate ligament injury commonly occurs during sports requiring acute deceleration or landing motion and that female athletes are more likely to sustain the injury than male athletes. The purpose of this study was to make task-to-task and male-female comparisons of knee kinematics and kinetics in several athletic activities. Three-dimensional knee kinematics and kinetics were investigated in 20 recreational athletes (10 males, 10 females) while performing hopping, cutting, turning, and sidestep and running (sharp deceleration associated with a change of direction). Knee kinematics and kinetics were compared among the four athletic tasks and between sexes. Subjects exhibited significantly lower peak flexion angle and higher peak extension moment in hopping compared with other activities (P < .05). In the frontal plane, peak abduction angle and peak adduction moment in cutting, turning, and sidestep and running were significantly greater compared with hopping (P < .05). No differences in knee kinematics and kinetics were apparent between male and female subjects. Recreational athletes exhibited different knee kinematics and kinetics in the four athletic motions, particularly in the sagittal and frontal planes. Male and female subjects demonstrated similar knee motions during the four athletic activities.

Restricted access

Decision Making and Experience Level Influence Frontal Plane Knee Joint Biomechanics During a Cutting Maneuver

Kristof Kipp, Tyler N. Brown, Scott G. McLean, and Riann M. Palmieri-Smith

The purpose of this study was to examine the combined impact of experience and decision making on frontal plane knee joint biomechanics during a cutting maneuver. Kinematic and kinetic data were collected from 12 recreationally active and 18 NCAA Division I female athletes during execution of anticipated and unanticipated single-leg land-and-cut maneuvers. Knee joint abduction angles and external knee joint abduction torques were calculated and discrete peak stance-phase variables were extracted. Angle and torque time-series data were also submitted to separate functional data analyses. Variables derived from the functional data analyses indicated that decision making influenced knee abduction angle and torque time series in the recreational group only. Specifically, these variables pointed to greater knee abduction at the end of stance as well as a greater, albeit delayed peak in knee abduction torque at the beginning of landing in the recreational athletes during the unanticipated condition. In addition, the recreational athletes displayed greater discrete peak knee abduction angles than the Division I athletes regardless of condition. Discrete peak knee abduction torque did not differ between groups or conditions.

Restricted access

Increasing Breast Support is Associated With a Distal-to-Proximal Redistribution of Joint Negative Work During a Double-Limb Landing Task

Hailey B. Fong, Alexis K. Nelson, Deirdre McGhee, Kevin R. Ford, and Douglas W. Powell

Sport has seen a large increase in the number of female athletes participating over the past 45 years. 1 Greater female sport participation has resulted in a concomitant increase in the number of musculoskeletal injuries. However, the rate of musculoskeletal injuries in female athletes has

Restricted access

Concussion History Moderates Trunk Motion and Lower Extremity Biomechanical Relationships During Jump Landing and Cutting

Kayla M. Kowalczyk, Eric J. Shumski, Julianne D. Schmidt, and Robert C. Lynall

relationship between trunk motion and lower extremity biomechanics may help explain the alterations of neuromuscular control following a concussion. Moreover, due to the lack of representation in literature, 8 research examining the movement strategies used by female athletes with or without concussion