Search Results

You are looking at 1 - 10 of 119 items for :

  • "locomotion" x
  • Journal of Applied Biomechanics x
  • Refine by Access: All Content x
Clear All
Restricted access

Cycle Rate, Length, and Speed of Progression in Human Locomotion

James G. Hay

There have been few attempts to synthesize the knowledge gleaned from the study of cyclic human locomotion and, specifically, to determine whether there are general laws that describe or govern all such forms of locomotion. The purpose of this paper was to test the hypothesis that, when a human participant performs multiple trials of a given form of cyclic locomotion at a wide range of speeds (S) and without constraint on cycle rate (CR) or cycle length (CL), the relationships of CR vs. S and CL vs. S have the same basic characteristics as do those for any other form of cyclic locomotion. Data were gathered from published and unpublished sources. For each participant and form of locomotion, CR-vs.-S and CL-vs.-S relationships were plotted on a common scattergram with S on the abscissa and both CR and CL on the ordinate. Analysis of data collected on 49 participants and 12 forms of locomotion showed that, for every combination of participant and form of locomotion considered (excluding combinations involving simulated locomotion), the relationships of CR vs. S and CL vs. S had the same basic characteristics. These relationships were quadratic in form with CR-vs.-S concave upward and CL-vs.-S concave downward. The factor that made the greater contribution to increases in S was a function of S, with CL the primary factor at low S and CR the primary factor at high S. In short, the results obtained provided unequivocal support for the hypothesis of the study. The basic CR-vs.-S and CL-vs.-S relationships observed for forms of actual locomotion were also observed for some, but not all, of the forms of simulated locomotion examined.

Restricted access

Characterization of a System for Studying Human Gait during Slope Walking

Andrea N. Lay, Chris J. Hass, D. Webb Smith, and Robert J. Gregor

Sloped walking surfaces provide a unique environment for examining the bio-mechanics and neural control of locomotion. While sloped surfaces have been used in a variety of studies in recent years, the current literature provides little if any discussion of the integrity, i.e., validity, of the systems used to collect data. The goal of this study was to develop and characterize a testing system capable of evaluating the kinetics of human locomotion on sloped surfaces. A ramped walkway system with an embedded force plate was constructed and stabilized. Center of pressure and reaction force data from the force plate were evaluated at 6 ramp grades (0, 5, 15, 25, 35, and 39%). Ground reaction force data at 0% grade were effectively the same as data from the same force plate when mounted in the ground and were well within the range of intrasubject variability. Collectively, data from all tests demonstrate the fidelity of this ramp system and suggest it can be used to evaluate human locomotion over a range of slope intensities.

Restricted access

Varying Treadmill Speed and Inclination Affects Spontaneous Synchronization When Two Individuals Walk Side by Side

Jeff A. Nessler, Gerald Kephart, Jason Cowell, and Charles J. De Leone

Studying spontaneous synchronization of stepping as two individuals walk on side-by-side treadmills may be useful for understanding the control of bipedal locomotion and may have implications for gait rehabilitation. Existing data suggest that this behavior is related to differences in leg length, walkway slope, and overground speed between partners, and might be promoted by altering these variables. This idea was evaluated here as 24 pairs of subjects stepped on side-by-side treadmills under several conditions of relative speed and slope. Overall, pairings that demonstrated very little spontaneous synchronization with the same treadmill speed and slope exhibited significant increases in this behavior when one treadmill was manipulated. Conversely, pairings that demonstrated a tendency to synchronize under normal conditions exhibited significant decreases in this behavior when either treadmill was altered.

Restricted access

Ground Reaction Forces during Human Locomotion on Railroad Ballast

Chip Wade and Mark S. Redfern

Locomotion over ballast surfaces provides a unique situation for investigating the biomechanics of gait. Although much research has focused on level and sloped walking on a smooth, firm surface in order to understand the common kinematic and kinetic variables associated with human locomotion, the literature currently provides few if any discussions regarding the dynamics of locomotion on surfaces that are either rocky or uneven. The purpose of this study was to investigate a method for using force plates to measure the ground reaction forces (GRFs) during gait on ballast. Ballast is a construction aggregate of unsymmetrical rock used in industry for the purpose of forming track bed on which railway ties are laid or in yards where railroad cars are stored. It is used to facilitate the drainage of water and to create even running surfaces. To construct the experimental ballast surfaces, 31.75-mm (1¼-in.) marble ballast at depths of approximately 63.5 mm (2.5 in.) or 101.6 mm (4 in.) were spread over a carpeted vinyl tile walkway specially designed for gait studies. GRF magnitudes and time histories from a force plate were collected under normal smooth surface and under both ballast surface conditions for five subjects. GRF magnitudes and time histories during smooth surface walking were similar to GRF magnitudes and time histories from the two ballast surface conditions. The data presented here demonstrate the feasibility of using a force plate system to expand the scope of biomechanical analyses of locomotion on ballast surfaces.

Restricted access

A Nonlinear Dynamics Approach to Human Movement

Richard E.A. Van Emmerik, Michael T. Rosenstein, William J. McDermott, and Joseph Hamill

Nonlinear dynamics and dynamical systems approaches and methodologies are increasingly being implemented in biomechanics and human movement research. Based on the early insights of Nicolai Bernstein (1967), a significantly different outlook on the movement control “problem” over the last few decades has emerged. From a focus on relatively simple movements has arisen a research focus with the primary goal to study movement in context, allowing the complexity of patterns to emerge. The approach taken is that the control of multiple degrees-of-freedom systems is not necessarily more difficult or complex than that of systems only comprising a few degrees of freedom. Complex patterns and dynamics might not require complex control structures. In this paper we present a tutorial overview of the mathematical underpinnings of nonlinear dynamics and some of its basic analysis tools. This should provide the reader with a basic level of understanding about the mathematical principles and concepts underlying pattern stability and change. This will be followed by an overview of dynamical systems approaches in the study of human movement. Finally, we discuss recent progress in the application of nonlinear dynamical techniques to the study of human locomotion, with particular focus on relative phase techniques for the assessment of coordination.

Restricted access

Hindlimb Kinetics and Neural Control during Slope Walking in the Cat: Unexpected Findings

Robert J. Gregor, Judith L. Smith, Dagan W. Smith, Alanna Oliver, and Boris I. Prilutsky

Different forms of locomotion have been studied in the cat in an effort to understand the neural mechanisms involved in movement control. Recent studies have focused on the roles of one- and two-joint muscles, the integration of central commands with sensory input, and the notion that the control system may be organized around the mechanical actions of muscles and the number of joints they span. To investigate the load-sharing between the two-joint medial gastrocnemius and one-joint soleus muscles, a single cat was trained to walk in an instrumented Plexiglas enclosed walkway at slopes ranging ±75%. Surgically implanted tendon force transducers monitored force output from each muscle. Equations in Newtonian mechanics were used to calculate joint kinetics. Results suggest that as slope angle decreased, the one-joint soleus became the primary contributor to the plantar-flexor moment calculated during stance. Unexpectedly, as slope angle increased, force in the one-joint soleus decreased while force in the two-joint medial gastrocnemius increased in the presence of the increased plantar-flexor moment calculated during stance. One explanation is that activation and force in the two-joint medial gastrocnemius should increase in the presence of a knee flexor and plantar-flexor moment. This was the case during upslope walking, as two-joint muscles increase their activation when they act as an agonist at both joints they cross. Additionally, a force-dependent inhibition of the soleus by the medial gastrocnemius has been described as part of a neural control system organized around the mechanical actions of muscles and the number of joints they span. Hence, a decrease in one-joint soleus force might be expected under certain conditions in upslope walking.

Restricted access

Movement Variability as a Clinical Measure for Locomotion

Bryan C. Heiderscheit

The purpose of this paper is to discuss the role of variability in human movement, with emphasis on locomotion variability. Based on the assessment of stride characteristics, movement variability has been associated with reduced gait stability and unsteadiness. However, based on the measure of joint coordination during locomotion, variability has been suggested to provide a source of adaptation. Therefore, it would appear that the assessment of movement coordination from either the task outcome (i.e., stride characteristics) or the joint coordination patterns provide distinctly opposing views of variability. This paper will discuss the use of the variability measures, specifically joint coordination variability, from a clinical perspective. Investigations will be presented in which a reduction in joint coordination variability has been associated with pathology. Finally, the clinical implications of these measures as well as treatment suggestions are discussed.

Restricted access

Lower Extremity Coupling Parameters during Locomotion and Landings

Mark D. Tillman, Chris J. Hass, John W. Chow, and Denis Brunt

During ballistic locomotion and landing activities, the lower extremity joints must function synchronously to dissipate the impact. The coupling of subtalar motion to tibial and knee rotation has been hypothesized to depend on the dynamic requirements of the task. This study was undertaken to look for differences in the coupling of 3-D foot and knee motions during walking, jogging, and landing from a jump. Twenty recreationally active young women with normal foot alignment (as assessed by a licensed physical therapist) were videotaped with high-speed cameras (250 Hz) during walking, jogging, hopping, and jumping trials. Coupling coefficients were compared among the four activities. The ratio of eversion to tibial rotation increased from the locomotion to the landing trials, indicating that with the increased loading demands of the activity, the requirements of foot motion increased. However, this increased motion was not proportionately translated into rotation of the tibia through the subtalar joint. Furthermore, the ratio of knee flexion to knee internal rotation increased significantly from the walking to landing trials. Together these findings suggest that femoral rotation may compensate for the increase in tibial rotation as the force-dissipating demands of the task increase. The relative unbalance among the magnitude of foot, tibial, and knee rotations observed with increasing task demands may have direct implications on clinical treatments aimed at reducing knee motion via controlling motion at the foot during landing tasks.

Restricted access

An Alternative Model of the Lower Extremity during Locomotion

Saunders N. Whittlesey and Joseph Hamill

An alternative to the Iterative Newton-Euler or linked segment model was developed to compute lower extremity joint moments using the mechanics of the double pendulum. The double pendulum model equations were applied to both the swing and stance phases of locomotion. Both the Iterative Newton-Euler and double pendulum models computed virtually identical joint moment data over the entire stride cycle. The double pendulum equations, however, also included terms for other mechanical factors acting on limb segments, namely hip acceleration and segment angular velocities and accelerations Thus, the exact manners in which the lower extremity segments interacted with each other could be quantified throughout the gait cycle. The linear acceleration of the hip and the angular acceleration of the thigh played comparable roles to muscular actions during both swing and stance.

Restricted access

An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles

Daniel P. Ferris, Joseph M. Czerniecki, and Blake Hannaford

We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.