This study aimed to determine whether subject-specific individual muscle models for the ankle plantar flexors could be obtained from single joint isometric and isovelocity maximum torque measurements in combination with a model of plantar flexion. Maximum plantar flexion torque measurements were taken on one subject at six knee angles spanning full flexion to full extension. A planar three-segment (foot, shank and thigh), two-muscle (soleus and gastrocnemius) model of plantar flexion was developed. Seven parameters per muscle were determined by minimizing a weighted root mean square difference (wRMSD) between the model output and the experimental torque data. Valid individual muscle models were obtained using experimental data from only two knee angles giving a wRMSD score of 16 N m, with values ranging from 11 to 17 N m for each of the six knee angles. The robustness of the methodology was confirmed through repeating the optimization with perturbed experimental torques (±20%) and segment lengths (±10%) resulting in wRMSD scores of between 13 and 20 N m. Hence, good representations of maximum torque can be achieved from subject-specific individual muscle models determined from single joint maximum torque measurements. The proposed methodology could be applied to muscle-driven models of human movement with the potential to improve their validity.