Search Results

You are looking at 1 - 10 of 24 items for :

  • "physical education" x
  • Journal of Applied Biomechanics x
  • Refine by Access: All Content x
Clear All
Restricted access

Effects of Insoles and Additional Shock Absorption Foam on the Cushioning Properties of Sport Shoes

Hung-Ta Chiu and Tzyy-Yuang Shiang

The purpose of this study was to investigate the effects of insoles and additional shock absorption foam on the cushioning properties of various sport shoes with an impact testing method. Three commercial sport shoes were used in this study, and shock absorption foam (TPE5020; Vers Tech Science Co. Ltd., Taiwan) with 2-mm thickness was placed below the insole in the heel region for each shoe. Eight total impacts with potential energy ranged from 1.82 to 6.08 J were performed onto the heel region of the shoe. The order of testing conditions was first without insole, then with insole, and finally interposing the shock absorption foam for each shoe. Peak deceleration of the striker was measured with an accelerometer attached to the striker during impact. The results of this study seemed to show that the insole or additional shock absorption foam could perform its shock absorption effect well for the shoes with limited midsole cushioning. Further, our findings showed that insoles absorbed more, even up to 24–32% of impact energy under low impact energy. It seemed to indicate that insoles play a more important role in cushioning properties of sport shoes under a low impact energy condition.

Restricted access

The Effect of Physical Exercise on Postural Stability in Sighted Individuals and Those Who Are Visually Impaired: An Analysis Adjusted for Physical Activity and Body Mass Index

Dorota Sadowska, Rafał Stemplewski, and Robert Szeklicki

The aim of this study was to assess the effect of physical exercise on postural stability in sighted participants and individuals who are visually impaired, adjusted for potential modulatory effects of physical activity level and body mass index (BMI). The study included 23 participants who were severely visually impaired and 23 sighted participants. Postural stability measurements were taken with open eyes (session I) and with closed eyes (session II). During each session, the mean velocity of the center of pressure (COP) displacements was determined using a force plate both before and after physical exercise. During testing with open eyes, the 2 groups did not differ significantly in terms of their postural response to physical exercise. When examined with closed eyes, the individuals who were visually impaired showed markedly greater postexercise increase in mean velocity of the COP displacement in the mediolateral direction. This intergroup difference was likely a consequence of significantly higher preexercise values of posturographic parameters observed in the sighted participants. More pronounced postexercise changes in the postural stability of sighted participants were associated with lower levels of physical activity and higher values of BMI. Further research is needed to explain the character of the abovementioned relationships in individuals who are visually impaired.

Restricted access

Book Reviews

Virginia L. Fortney and David J. Sanderson

Restricted access

Muscle Coordination During Maximal Butterfly Stroke Swimming: Comparison Between Competitive and Recreational Swimmers

Keisuke K. Yamakawa, Rena Nishiwaki, and Yasuo Sengoku

, upper limb or trunk or lower limb). Methods Participants Eight female competitive swimmers (age: 19.6 [0.7] y, height: 1.61 [0.04] m, body mass: 55.9 [4.3] kg, and swimming training experience: 14.6 [2.6] y) and 8 female physical education students who played aquatic sports for recreational purposes (age: 20

Restricted access

Comparison of Five Kinematic-Based Identification Methods of Foot Contact Events During Treadmill Walking and Running at Different Speeds

Felipe Alvim, Lucenildo Cerqueira, Aluízio D’Affonsêca Netto, Guilherme Leite, and Adriane Muniz

This study involved a comparison of 5 kinematic-based algorithms to detect heel strike (HS) and toe-off (TO) events during human locomotion at different speeds. The objective was to assess how different running and walking speeds affect contact event determination during treadmill locomotion. Thirty male runners performed walking at 5 km/h and running at 9, 11, and 13 km/h on a treadmill. A kinematic system was used to capture the trajectories of 2 retro-reflective markers placed at the subject’s right heel and second metatarsal. A footswitch device was used to determine the “true” times of HS and TO compared with 5 kinematic-based algorithms. The results of the current study illustrated that speed influences the HS error in the vertical position and horizontal velocity algorithms, and the TO error in the vertical position and horizontal velocity algorithms. This difference was found in the transition from walking to running; however, higher running speeds did not affect the error estimation. Higher accuracy was found with combined algorithms, namely, one using vertical acceleration and position and another using horizontal and vertical position with no influence from different locomotion speeds. Therefore, these algorithms are recommended in studies where speed is self-selected because they work well for a broad range of locomotion velocities.

Restricted access

Joint Coordination With a Change in Task Constraint During Accurate Overhead Throwing

Arata Kimura, Shinsuke Yoshioka, and Senshi Fukashiro

-4115(08)61937-8 29. Seifert L , Davids K . Ecological dynamics: a theoretical framework for understanding sport performance, physical education and physical activity . In: Bourgine P , Collet P , Parrend P , eds. First Complex Systems Digital Campus World E-Conference 2015 . Springer ; 2017 : 29

Restricted access

Effects of the Pullover Exercise on the Pectoralis Major and Latissimus Dorsi Muscles as Evaluated by EMG

Paulo H. Marchetti and Marco C. Uchida

The aim of the current study was to investigate the EMG activity of pectoralis major and latissimus dorsi muscles during the pullover exercise. Eight healthy male volunteers took part in the study. The EMG activity of the pectoralis major and that of the latissimus dorsi of the right side were acquired simultaneously during the pullover exercise with a free-weight barbell during both the concentric and eccentric phases of the movement. After a warm-up, all the subjects were asked to perform the pullover exercise against an external load of 30% of their body weight, during 1 set × 10 repetitions. The criterion adopted to normalize the EMG data was the maximal voluntary isometric activation. The present findings demonstrated that the barbell pullover exercise emphasized the muscle action of the pectoralis major more than that of the latissimus dorsi, and the higher activation depended on the external force lever arm produced.

Restricted access

Errors in Force Generation and Changes in Controlling Patterns Following Agonist Muscle Fatigue

Yi-Ming Huang, Ya-Ju Chang, Miao-Ju Hsu, Chia-Ling Chen, Chia-Ying Fang, and Alice May-Kuen Wong

The purpose of this study was to evaluate whether agonist muscle fatigue changed the coactivation time and the co-contraction magnitude of the agonist and antagonist muscle, and if the agonist muscle fatigue produced bias (constant error: CE) and inconsistency (variable error: VE) of the force. Subjects are 10 healthy people and one person with impaired proprioception. EMG and force for fast (0.19 ± 0.06 s) and slow (1.20 ± 0.44 s) targeted isometric dorsiflexions were recorded before and after fatigue of the dorsiflexors. The results revealed that the coactivation time increased after fatigue only in the slow contractions but the co-contraction magnitude did not change. The postfatigue increment of the CE was greater in the fast contractions than in the slow ones. We conclude that the postfatigue compensatory strategy can reduce the fatigue-induced bias. The change of muscles activation level after fatigue might be under the influence of the common drive. Impaired proprioception is a possible cause of the fatigue-related increase in bias and inconsistency.

Restricted access

Effects of Resistance Training of Upper Limb and Trunk Muscles on Soccer Instep Kick Kinematics

Miguel Arcanjo de Assis, Thiago Ribeiro Teles Santos, Sergio Teixeira Fonseca, André Gustavo Pereira de Andrade, Priscila Albuquerque Araújo, Thales Rezende de Souza, Renan Alves Resende, and Juliana Melo Ocarino

The upper body and trunk muscles are crucial to perform soccer kicks. Resistance training targeting these muscles may modify the pattern adopted during kicking. This study aimed to investigate the effect of resistance training of the arm and anterior trunk muscles on instep kicking kinematics. Twenty-six male participants were randomly allocated into a training group or control group. The training group underwent resistance training of arm and trunk muscles and practiced the instep kick for 8 weeks. The control group only practiced kicking during the same period. The trunk, hip, and knee kinematics were assessed during the instep kick before and after the intervention. Kinematics were analyzed according to their data distribution with statistical parametric or nonparametric mapping. The effect of the training on the 1-repetition maximum test was analyzed using a repeated-measures multivariate analysis of variance. The training group showed greater hip extension after the training during the backswing phase (Hedge g effect size of 0.316–0.321) and increased 1-repetition maximum for all exercises. There were no other differences. The present study documented the nonlocal effect of strengthening training in which arm and trunk muscle training resulted in changes in hip kinematics during the backswing phase of the instep kick.

Restricted access

Numerical Streamline Patterns at Swimmer’s Surface Using RANS Equations

Ahlem Arfaoui, Catalin Viorel Popa, Redha Taïar, Guillaume Polidori, and Stéphane Fohanno

The objective of this article is to perform a numerical modeling on the flow dynamics around a competitive female swimmer during the underwater swimming phase for a velocity of 2.2 m/s corresponding to national swimming levels. Flow around the swimmer is assumed turbulent and simulated with a computational fluid dynamics method based on a volume control approach. The 3D numerical simulations have been carried out with the code ANSYS FLUENT and are presented using the standard k-ω turbulence model for a Reynolds number of 6.4 × 106. To validate the streamline patterns produced by the simulation, experiments were performed in the swimming pools of the National Institute of Sports and Physical Education in Paris (INSEP) by using the tufts method.