Search Results

You are looking at 1 - 10 of 116 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • All content x
Clear All
Restricted access

Micheal J. Luera, Brittany Dowling, Tyler W.D. Muddle and Nathaniel D.M. Jenkins

In baseball, pitch velocity (PV) is considered one of the most important components to a pitcher’s success. Consequently, the ability to pitch with high velocities is a trait heavily sought after by scouts and coaches at all levels of the sport. Alongside pitch command, or the ability to throw a

Restricted access

LeRoy W. Alaways, Sean P. Mish and Mont Hubbard

Pitched-baseball trajectories were measured in three dimensions during competitions at the 1996 Summer Olympic games using two high-speed video cameras and standard DLT techniques. A dynamic model of baseball flight including aerodynamic drag and Magnus lift forces was used to simulate trajectories. This simulation together with the measured trajectory position data constituted the components of an estimation scheme to determine 8 of the 9 release conditions (3 components each of velocity, position, and angular velocity) as well as the mean drag coefficient CD and terminal conditions at home plate. The average pitch loses 5% of its initial velocity during flight. The dependence of estimated drag coefficient on Reynolds number hints at the possibility of the drag crisis occurring in pitched baseballs. Such data may be used to quantify a pitcher’s performance (including fastball speed and amount of curve-ball break) and its improvement or degradation over time. It may also be used to understand the effects of release parameters on baseball trajectories.

Restricted access

Hardeep Singh, Mark Lee, Matthew J. Solomito, Christian Merrill and Carl Nissen

, or soccer. 3 , 4 , 10 – 13 One explanation for the diverse presentation may be that primary lumbar extension exists in a variety of athletic movements but is not recognized, as the necessarily complex spine motion of sport masks lumbar extension. Baseball pitching is an extremely intricate motion

Restricted access

Brett S. Pexa, Eric D. Ryan, Elizabeth E. Hibberd, Elizabeth Teel, Terri Jo Rucinski and Joseph B. Myers

Baseball pitching is a dynamic movement that results in some of the highest kinematic and kinetic values in sport. Pitchers generate glenohumeral internal rotation angular velocities of over 7000° per second and internal rotational torques of 94 to 96 Nm. 1 At ball release, the shoulder moves from

Restricted access

Yungchien Chu, Glenn S. Fleisig, Kathy J. Simpson and James R. Andrews

The purpose of the current study was to identify the biomechanical features of elite female baseball pitching. Kinematics and kinetics of eleven elite female baseball pitchers were reported and compared with eleven elite male pitchers. Results suggested that females share many similarities with males in pitching kinematics, with a few significant differences. Specifically, at the instant of stride foot contact, a female pitcher had a shorter and more open stride and less separation between pelvis orientation and upper torso orientation. From foot contact to ball release, a female pitcher produced lower peak angular velocity for throwing elbow extension and stride knee extension. Ball velocity was lower for the female. Foot contact to ball release took more time for a female pitcher. Maximal proximal forces at the shoulder and elbow joints were less for a female pitcher.

Restricted access

Steven W. Barrentine, Tomoyuki Matsuo, Rafael F. Escamilla, Glenn S. Fleisig and James R. Andrews

Previous researchers studying baseball pitching have compared kinematic and kinetic parameters among different types of pitches, focusing on the trunk, shoulder, and elbow. The lack of data on the wrist and forearm limits the understanding of clinicians, coaches, and researchers regarding the mechanics of baseball pitching and the differences among types of pitches. The purpose of this study was to expand existing knowledge of baseball pitching by quantifying and comparing kinematic data of the wrist and forearm for the fastball (FA), curveball (CU) and change-up (CH) pitches. Kinematic and temporal parameters were determined from 8 collegiate pitchers recorded with a four-camera system (200 Hz). Although significant differences were observed for all pitch comparisons, the least number of differences occurred between the FA and CH. During arm cocking, peak wrist extension for the FA and CH pitches was greater than for the CU, while forearm supination was greater for the CU. In contrast to the current study, previous comparisons of kinematic data for trunk, shoulder, and elbow revealed similarities between the FA and CU pitches and differences between the FA and CH pitches. Kinematic differences among pitches depend on the segment of the body studied.

Restricted access

Adam Culiver, J. Craig Garrison, Kalyssa M. Creed, John E. Conway, Shiho Goto and Sherry Werner

Pitching is a series of dynamic movements that require full body coordination and utilization of the entire kinetic chain. The pitching motion consists of 6 phases: windup, stride, arm cocking, arm acceleration, arm deceleration, and follow-through. 1 Pitchers generate energy in the windup, stride

Restricted access

Norihisa Fujii and Mont Hubbard

A simulation and optimization procedure was constructed to investigate the relationships between optimal movement and muscular strength for baseball pitching. Four segments (torso, upper arms, lower arms, hands) and six torque generators (shoulders, elbows, wrists) are modeled. The torque generators have torque-angle and torque-angular velocity characteristics of Hill-type muscle function. The optimization objective function includes release velocity and negative terms penalizing joint loading and inaccuracy. The weighting coefficient for joint loads has a strong influence on the results. As this coefficient increases, the motion becomes more similar to actual measured pitches. Combining active state patterns optimized for different weighting coefficients gives larger joint loads in the simulated motion. This supports the hypothesis that well-coordinated active states are important for controlling the relationships of the different torque generators in order to create a reasonable and effective pitching motion. The model proposed here is superior to previous simulations for throwing, from the viewpoint of modeling with characteristics of Hill-type muscle function, and can be used to explore realistic baseball pitching.

Restricted access

Matthew D. Milewski, Sylvia Õunpuu, Matthew Solomito, Melany Westwell and Carl W. Nissen

Documentation of the lower extremity motion patterns of adolescent pitchers is an important part of understanding the pitching motion and the implication of lower extremity technique on upper extremity loads, injury and performance. The purpose of this study was to take the initial step in this process by documenting the biomechanics of the lower extremities during the pitching cycle in adolescent pitchers and to compare these findings with the published data for older pitchers. Three-dimensional motion analysis using a comprehensive lower extremity model was used to evaluate the fast ball pitch technique in adolescent pitchers. Thirty-two pitchers with a mean age of 12.4 years (range 10.5–14.7 years) and at least 2 years of experience were included in this study. The pitchers showed a mean of 49 ± 12° of knee flexion of the lead leg at foot contact. They tended to maintain this position through ball release, and then extended their knee during the follow through phase (ball release to maximal internal glenohumeral rotation). The lead leg hip rapidly progressed into adduction and flexion during the arm cocking phase with a range of motion of 40 ± 10° adduction and 30 ± 13° flexion. The lead hip mean peak adduction velocity was 434 ± 83°/s and flexion velocity was 456 ± 156°/s. Simultaneously, the trailing leg hip rapidly extended approaching to a mean peak extension of –8 ± 5° at 39% of the pitch cycle, which is close to passive range of motion constraints. Peak hip abduction of the trailing leg at foot contact was –31 ± 12°, which also approached passive range of motion constraints. Differences and similarities were also noted between the adolescent lower extremity kinematics and adult pitchers; however, a more comprehensive analysis using similar methods is needed for a complete comparison.

Restricted access

Rafael F. Escamilla, Glenn S. Fleisig, Steven W. Barrentine, Naiquan Zheng and James R. Andrews

The purpose of this study was to establish and compare kinematic data among four groups of collegiate pitchers who threw the fastball (FA), change-up (CH), curveball (CU), and slider (SL). Twenty-six kinematic parameters at lead foot contact, during the arm-cocking and arm acceleration phases, and at ball release were measured for 16 collegiate baseball pitchers. Approximately 60% of these parameters showed significant differences among the four pitch variations. The greatest number of differences (14 of 26) occurred between the FA and CH groups, while the fewest differences (2 of 26) occurred between the FA and SL groups. The CH group had the smallest knee and elbow flexion at lead foot contact and the greatest knee and elbow flexion at ball release. During the arm-cocking and arm acceleration phases, peak shoulder, elbow, and trunk angular velocities were generally greatest in the FA and SL groups and smallest in the CH group. At ball release the CH group had the most upright trunk and the greatest horizontal shoulder adduction, while the CU group had the most lateral trunk tilt. Understanding kinematic differences can help a pitcher select and learn different pitches and can help a batter learn how to identify different pitches.