The HKB model and its variants characterize bimanual coordination with fixedpoint dynamics and predict stationarity of the mean and variance of relative phase in stable coordinative states. In the current study, participants performed in-phase and antiphase coordination modes in rhythmic bimanual finger and elbow flexionextension tasks. The results of runs tests revealed that discrete relative phase was nonstationary in 49.25%, 50.25%, and 54% of time-series in the 10, 20, and 30 box runs tests, respectively. In all individual Task conditions >38% of time-series were nonstationary. These findings contradicted model predictions that the mean and variance of relative phase are stationary in bimanual coordination and distinguish the concept of dynamical stability from statistical stationarity. The findings indicated that relative phase was not attracted to a stationary fixed-point and that fluctuations in relative phase are not Gaussian white noise as in existing models of bimanual coordination.
Search Results
Nonstationarity of Stable States in Rhythmic Bimanual Coordination
Eric G. James
Adaptive Regulation in a Stable Performance Environment: Trial-To-Trial Consistency in Cue Sports Performance
Jing Wen Pan, Pui Wah Kong, and John Komar
was that the adaptation effect would be less pronounced in low-skilled players. Their error correction would be more stable across the trials and not adapted to the error level (i.e., unable to modify regardless of small or large errors). Methods Participants This study was approved by the Nanyang
The Effect of Nonspecific Task Constraints on Quadrupedal Locomotion: I. Interlimb Coordination
Jill Whitall, Larry Forrester, and Nancy Getchell
The present study examined the effect of nonspecific task constraints on the multilimb coordination task of preferred-speed crawling. Adult subjects undertook three trials each of the following randomly ordered conditions: forward prone (FP), backward supine (BS), backward prone (BP) and forward supine (FS). Subjects adopted specific coordinative solutions consistent with task-related function rather than anatomical specification. The patterns were relatively stable, with BP being least stable. Across conditions, subjects changed their velocity in a predictable order that corresponded to the various constraints. These velocity changes were largely attributable to stride length adjustments and not limb frequency. Within a condition, neither velocity nor anthropometrics appeared to influence the coordinative solution. Overall, rather large differences were found in coordinative solutions, possibly owing to the nature of the tasks and/or individual searching strategies. The results were interpretable within a dynamic approach to coordination and support the idea that coordination is functionally rather than anatomically determined.
Bimanual Circle Drawing during Secondary Task Loading
Jeffery J. Summers, Winston D. Byblow, Don F. Bysouth-Young, and Andras Semjen
Seven right-handed participants performed bimanual circling movements in either a symmetrical or an asymmetrical coordination mode. Movements were paced with an auditory metronome at predetermined frequencies corresponding to transition frequency, where asymmetrical patterns became unstable, or at two-thirds transition frequency, where both symmetrical and asymmetrical patterns were stable. The pacing tones were presented in either a high (1000 Hz) or low (500 Hz) pitch, and the percentage of high-pitched tones during a 20 s trial varied between 0% and 70%. Participants were instructed to count the number of high-pitched pacing tones that occurred during a trial of bimanual circling. Overall, the symmetrical pattern was more stable than the asymmetrical pattern at both frequencies. Errors on the tone-counting task were significantly higher during asymmetrical circling than symmetrical circling but only at the transition movement frequency. The results suggest that cognitive processes play a role in maintaining coordination patterns within regions of instability.
Stability of Coordination Patterns in Handwriting: Effects of Speed and Hand
Isabelle Sallagoïty, Sylvie Athènes, Pier-Giorgio Zanone, and Jean-Michel Albaret
Previous studies have shown the existence of preferred stroke directions and shapes in handwriting. Assuming that such a two-dimensional trajectory formation process relies on the nonlinear coordination between two abstract orthogonal oscillators, a recent study (Athènes et al., in press) investigated the relative stability and the temporal accuracy of such coordination patterns in performing various ellipsoids corresponding to different phase and amplitude relationships between the oscillators. Results showed that only a small subset of the patterns was stable and accurate. The present study tested and verified the assumption that more stable coordination patterns deteriorate less under a speed constraint. In addition, differences between the dominant and nondominant hands gave insights into various effects modulating the stability and accuracy of such preferred patterns. Evidence of preferred coordination patterns and the predictability of their deterioration corroborate the existence of dynamics underlying handwriting in terms of nonlinearly coupled oscillators.
Dental Occlusion Influences the Standing Balance on an Unstable Platform
Sonia Julià-Sánchez, Jesús Álvarez-Herms, Hannes Gatterer, Martin Burtscher, Teresa Pagès, and Ginés Viscor
Contradictory results are still reported on the influence of dental occlusion on the balance control. We attempted to determine whether there are differences in balance between opposed dental occlusion (Intercuspal position (ICP)/“Cotton rolls” mandibular position [CR]) for two extreme levels of stability (stable/unstable). Twenty-five subjects were monitored under both dental occlusion and level of stability conditions using an unstable platform Balance System SD. The resulting stability index suggests that body balance is significantly better when dental occlusion is set in CR (p < .001) in unstable but not in stable conditions. Occlusal traits significantly influencing postural control were Angle Class (p < .001), crowding (p = .006), midline deviation (p < .001), crossbite (p < .001), anterior open bite (p = .05), and overjet (p = .01). It could be concluded that the sensory information linked to the dental occlusion for the balance control comes strongly into effect in unstable conditions.
Stability of Rhythmic Finger Movements in Children with a Developmental Coordination Disorder
M.J.M. Volman and Reint H. Geuze
The stability of single and bimanual (i.e., in-phase and antiphase) rhythmic finger movements was studied in 24 children with a developmental coordination disorder (DCD) and 24 matched controls from a dynamic pattern perspective. Stability was assessed by applying perturbations and measuring the time the system needed to return to its initial stability (i.e., the relaxation time). In addition, fluctuations of the patterns were measured. For antiphase coordination patterns, the frequency at which loss of stability occurred was also determined. Children with DCD displayed less stable single and bimanual rhythmic coordination patterns than control children. Further, within the DCD group, 9 children were identified as having particularly poor bimanual coordination stability. Individual differences suggested that variability of individual limb oscillations might have contributed to this poorer interlimb coordination stability. Findings were discussed in relation to a previous study on DCD in which the Wing-Kristofferson timekeeper model was applied.
The Role of Vision in Control of Orientation in a Back Tuck Somersault
Christina D. Davlin, William A. Sands, and Barry B. Shultz
During a back tuck somersault, the angular velocity of the head is thought to surpass the visual system's ability to maintain a distinct and continuous picture of the environment. The primary objectives of this research were to determine if differences existed with regard to trunk and lower body kinematics, as well as landing balance, when gymnasts perform back tuck somersaults under different vision conditions. Ten female gymnasts (age = 11.6 ± 2.67 years, competitive level = 8 ± 1.15, and training time in gymnastics = 5.9 ± 1.63 years) performed back tuck somersaults under 4 vision conditions while wearing electromagnetic sensors that allowed automatic digitizing. Although no significant differences were found between vision conditions with regard to timing, joint angles, and joint angular velocities, gymnasts were more stable at landing under conditions that allowed vision during either the entire somersault or the last half of me somersault.
Bimanual Coordination and Musical Experience: The Role of Intrinsic Dynamics and Behavioral Information
Martine H.G. Verheul and Reint H. Geuze
Rhythmic interlimb coordination arises from the interaction of intrinsic dynamics and behavioral information, that is, intention, memory, or external information specifying the required coordination pattern. This study investigates the influence of the content of memorized behavioral information on coordination in musically experienced and inexperienced participants. These groups are hypothesized to have different intrinsic dynamics for this task. Stability was assessed in a switching task (variability and switching time). The in-phase, antiphase, and 90°-phase difference were specified in a neutral and an ecologically relevant manner. Musicians showed more stable coordination than nonmusicians did. No interaction effect was found with memorized behavioral information. Behavioral information showed an interaction effect with phase pattern on coordination variability, with the strongest effect for the 90°-phase pattern. Switching time was affected largely in line with the findings for coordination variability. Participants showed an intraindividual preference for one type of gallop and one type of switch strategy, suggesting different hand roles.
Wrist Muscle Activity during Rapid Unimanual Tapping with a Drumstick in Drummers and Nondrummers
Shinya Fujii, Kazutoshi Kudo, Masahiro Shinya, Tatsuyuki Ohtsuki, and Shingo Oda
This study investigated performance and wrist muscle activity during rapid-repetitive unimanual tapping with a drumstick in right-handed drummers and nondrummers. Analyses of performances revealed no difference in tapping frequency and peak tap force between drummers and nondrummers, although the drummers showed less variability in intertap interval than the nondrummers. Analyses of the electromyographic (EMG) data obtained by recording the activity of the flexor carpi ulnalis and the extensor carpi radialis muscles of the right wrist revealed several distinct differences between the two groups: the drummers showed a lower level of muscle cocontraction together with an earlier decline of wrist flexor muscle activity and a smaller variability of muscle activation time in the wrist flexors compared with the nondrummers. We suggest that these characteristics in wrist muscle activity in the drummers have been acquired following extensive practice for the efficient use of wrist muscles and stable drumming performance.