Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Carl M. Maresh x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Full access

Lawrence E. Armstrong and Carl M. Maresh

Exercise-heat tolerance (EHT) in children is influenced by many physiological factors, including sweat gland activity, cardiac output, exercise economy, ability to acclimate to heat, and maturation of organ systems. It is generally believed that children cannot tolerate hot environments as well as adults, although some children exhibit EHT that is superior to that of adults. There has been no research showing large exercise-induced differences between the core body temperatures of children versus adults, but differences in the time to onset of syncope and fatigue have been observed. This suggests that the greatest risk of heat illness for children is heat exhaustion (i.e., cardiovascular instability) and not heat stroke (i.e., hyperthermia). Therefore this review (a) examines the conclusions of previous studies to clarify misinterpretations of data, and (b) identifies research questions that require future study.

Full access

Lawrence E. Armstrong, Carl M. Maresh, John W. Castellani, Michael F. Bergeron, Robert W. Kenefick, Kent E. LaGasse, and Deborah Riebe

Athletes and researchers could benefit from a simple and universally accepted technique to determine whether humans are well-hydrated, euhydrated, or hypohydrated. Two laboratory studies (A, B) and one field study (C) were conducted to determine if urine color ( U col ) indicates hydration status accurately and to clarify the interchangeability of U col , urine osmolality ( U osm ), and urine specific gravity ( U sg ) in research. U col , U osm , and U sg were not significantly correlated with plasma osmolality, plasma sodium, or hemato-crit. This suggested that these hematologic measurements are not as sensitive to mild hypohydration (between days) as the selected urinary indices are. When the data from A, B, and C were combined, U col was strongly correlated with U hg and U„sm. It was concluded that (a) U col may be used in athletic/industrial settings or field studies, where close estimates of U sg or U osm are acceptable, but should not be utilized in laboratories where greater precision and accuracy are required, and (b) U osm and U sg may be used interchangeably to determine hydration status.