Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Gary Slater x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Full access

Ava Farley, Gary J. Slater, and Karen Hind

Athletic populations require high-precision body composition assessments to identify true change. Least significant change determines technical error via same-day consecutive tests but does not integrate biological variation, which is more relevant for longitudinal monitoring. The aim of this study was to assess biological variation using least significant change measures from body composition methods used on athletes, including surface anthropometry (SA), air displacement plethysmography (BOD POD), dual-energy X-ray absorptiometry (DXA), and bioelectrical impedance spectroscopy (BIS). Thirty-two athletic males (age = 31 ± 7 years; stature = 183 ± 7 cm; mass = 92 ± 10 kg) underwent three testing sessions over 2 days using four methods. Least significant change values were calculated from differences in Day 1 Test 1 versus Day 1 Test 2 (same-day precision), as well as Day 1 Test 1 versus Day 2 (consecutive-day precision). There was high agreement between same-day and consecutive-day fat mass and fat-free mass measurements for all methods. Consecutive-day precision error in comparison with the same-day precision error was 50% higher for fat mass estimates from BIS (3,607 vs. 2,331 g), 25% higher from BOD POD (1,943 vs. 1,448 g) and DXA (1,615 vs. 1,204 g), but negligible from SA (442 vs. 586 g). Consecutive-day precision error for fat-free mass was 50% higher from BIS (3,966 vs. 2,276 g) and SA (1,159 vs. 568 g) and 25% higher from BOD POD (1,894 vs. 1,450 g) and DXA (1,967 vs. 1,461 g) than the same-day precision error. Precision error in consecutive-day analysis considers both technical error and biological variation, enhancing the identification of small, yet significant changes in body composition of resistance-trained male athletes. Given that change in physique is likely to be small in this population, the use of DXA, BOD POD, or SA is recommended.

Open access

Gary J. Slater, Jennifer Sygo, and Majke Jorgensen

Although sprint athletes are assumed to primarily be interested in promoting muscle hypertrophy, it is the ability to generate explosive muscle power, optimization of power-to-weight ratio, and enhancement of anaerobic energy generation that are key outcomes of sprint training. This reflects the physique of track sprinters, being characterized as ecto-mesomorphs. Although there is little contemporary data on sprinters dietary habits, given their moderate energy requirements relative to body mass, a carbohydrate intake within the range of 3–6 g·kg−1·day−1 appears reasonable, while ensuring carbohydrate availability is optimized around training. Similarly, although protein needs may be twice general population recommendations, sprint athletes should consume meals containing ∼0.4 g/kg high biological value protein (i.e., easily digested, rich in essential amino acids) every 3–5 hr. Despite the short duration of competitions and relative long-recovery periods between races, nutrition still plays an important role in sprint performance. As energy expenditure moderates during competition, so too should intake of energy and macronutrients to prevent unwanted weight gain. Further adjustments in macronutrient intake may be warranted among athletes contemplating optimization of power-to-weight ratio through reductions in body fat prior to the competitive season. Other novel acute methods of weight loss have also been proposed to enhance power-to-weight ratio, but their implementation should only be considered under professional guidance. Given the metabolic demands of sprinting, a few supplements may be of benefit to athletes in training and/or competition. Their use in competition should be preceded with trialing in training to confirm tolerance and perceived ergogenic potential.

Full access

Alisa Nana, Gary J. Slater, Arthur D. Stewart, and Louise M. Burke

Dual energy X-ray absorptiometry (DXA) is rapidly becoming more accessible and popular as a technique to monitor body composition, especially in athletic populations. Although studies in sedentary populations have investigated the validity of DXA assessment of body composition, few studies have examined the issues of reliability in athletic populations and most studies which involve DXA measurements of body composition provide little information on their scanning protocols. This review presents a summary of the sources of error and variability in the measurement of body composition by DXA, and develops a theoretical model of best practice to standardize the conduct and analysis of a DXA scan. Components of this protocol include standardization of subject presentation (subjects rested, overnight-fasted and in minimal clothing) and positioning on the scanning bed (centrally aligned in a standard position using custom-made positioning aids) as well as manipulation of the automatic segmentation of regional areas of the scan results. Body composition assessment implemented with such protocol ensures a high level of precision, while still being practical in an athletic setting. This ensures that any small changes in body composition are confidently detected and correctly interpreted. The reporting requirements for studies involving DXA scans of body composition include details of the DXA machine and software, subject presentation and positioning protocols, and analysis protocols.

Open access

Louise M. Burke, Linda M. Castell, Douglas J. Casa, Graeme L. Close, Ricardo J. S. Costa, Ben Desbrow, Shona L. Halson, Dana M. Lis, Anna K. Melin, Peter Peeling, Philo U. Saunders, Gary J. Slater, Jennifer Sygo, Oliver C. Witard, Stéphane Bermon, and Trent Stellingwerff

The International Association of Athletics Federations recognizes the importance of nutritional practices in optimizing an Athlete’s well-being and performance. Although Athletics encompasses a diverse range of track-and-field events with different performance determinants, there are common goals around nutritional support for adaptation to training, optimal performance for key events, and reducing the risk of injury and illness. Periodized guidelines can be provided for the appropriate type, amount, and timing of intake of food and fluids to promote optimal health and performance across different scenarios of training and competition. Some Athletes are at risk of relative energy deficiency in sport arising from a mismatch between energy intake and exercise energy expenditure. Competition nutrition strategies may involve pre-event, within-event, and between-event eating to address requirements for carbohydrate and fluid replacement. Although a “food first” policy should underpin an Athlete’s nutrition plan, there may be occasions for the judicious use of medical supplements to address nutrient deficiencies or sports foods that help the athlete to meet nutritional goals when it is impractical to eat food. Evidence-based supplements include caffeine, bicarbonate, beta-alanine, nitrate, and creatine; however, their value is specific to the characteristics of the event. Special considerations are needed for travel, challenging environments (e.g., heat and altitude); special populations (e.g., females, young and masters athletes); and restricted dietary choice (e.g., vegetarian). Ideally, each Athlete should develop a personalized, periodized, and practical nutrition plan via collaboration with their coach and accredited sports nutrition experts, to optimize their performance.