Search Results

You are looking at 1 - 2 of 2 items for

  • Author: John H. Challis x
  • User-accessible content x
Clear All Modify Search
Full access

John H. Challis

The results of the 2020 review and ranking of U.S. doctoral programs in kinesiology conducted by the National Academy of Kinesiology (NAK) are presented. These results represent data collected for the  2015, 2016, 2017, 2018, and 2019 calendar years for 43 programs. The rankings reflect data collected on program faculty (productivity, funding, and visibility) and program students (admissions, support, publications, and employment). The data for each assessment index were first transformed into z scores, and then the z scores converted into T-scores. Weights were applied to the T-scores of the indices and then summed to obtain a total T-score. Programs were ranked in two ways: one based on the total T-scores from the data not normalized (unadjusted) and the other with total T-scores from the data normalized with respect to the number of faculty members in each program (adjusted). In addition to program rankings, descriptive data are presented on faculty and student data.

Open access

Samantha L. Winter, Sarah M. Forrest, Joanne Wallace, and John H. Challis

The purpose of this study was to validate a new geometric solids model, developed to address the lack of female-specific models for body segment inertial parameter estimation. A second aim was to determine the effect of reducing the number of geometric solids used to model the limb segments on model accuracy. The full model comprised 56 geometric solids, the reduced model comprised 31, and the basic model comprised 16. Predicted whole-body inertial parameters were compared with direct measurements (reaction board, scales), and predicted segmental parameters with those estimated from whole-body dual x-ray absorptiometry scans for 28 females. The percentage root mean square error (%RMSE) for whole-body volume was <2.5% for all models and 1.9% for the full model. The %RMSE for whole-body center of mass location was <3.2% for all models. The %RMSE whole-body mass was <3.3% for the full model. The RMSE for segment masses was <0.5 kg (<0.5%) for all segments; Bland-Altman analysis showed the full and reduced models could adequately model thigh, forearm, foot, and hand segments, but the full model was required for the trunk segment. The proposed model was able to accurately predict body segment inertial parameters for females; more geometric solids are required to more accurately model the trunk.