Search Results

You are looking at 1 - 9 of 9 items for :

  • Author: Luc J.C. van Loon x
  • Physical Education and Coaching x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Free access

Resistance Exercise Training, a Simple Intervention to Preserve Muscle Mass and Strength in Prostate Cancer Patients on Androgen Deprivation Therapy

Lisanne H.P. Houben, Milou Beelen, Luc J.C. van Loon, and Sandra Beijer

Androgen deprivation therapy (ADT) forms the cornerstone in the treatment of advanced prostate cancer. However, by suppressing testosterone ADT results in a decrease of skeletal muscle mass. In this narrative review, we explore the magnitude and mechanisms of ADT-induced muscle mass loss and the consequences for muscle strength and physical performance. Subsequently, we elucidate the effectiveness of supervised resistance exercise training as a means to mitigate these adverse effects. Literature shows that resistance exercise training can effectively counteract ADT-induced loss of appendicular lean body mass and decline in muscle strength, while the effect on physical performances is inconclusive. As resistance exercise training is feasible and can be safely implemented during ADT (with special attention for patients with bone metastases), it should be incorporated in standard clinical care for prostate cancer patients (starting) with ADT.

Free access

Protein Intake Distribution: Beneficial, Detrimental, or Inconsequential for Muscle Anabolism? Response to Witard & Mettler

Jorn Trommelen, Andrew M. Holwerda, and Luc J.C. van Loon

Open access

Jumping Exercise Combined With Collagen Supplementation Preserves Bone Mineral Density in Elite Cyclists

Luuk Hilkens, Nick van Schijndel, Vera C.R. Weijer, Lieselot Decroix, Judith Bons, Luc J.C. van Loon, and Jan-Willem van Dijk

This study assessed the effect of combined jump training and collagen supplementation on bone mineral density (BMD) in elite road-race cyclists. In this open-label, randomized study with two parallel groups, 36 young (21 ± 3 years) male (n = 8) and female (n = 28) elite road-race cyclists were allocated to either an intervention (INT: n = 18) or a no-treatment control (CON: n = 18) group. The 18-week intervention period, conducted during the off-season, comprised five 5-min bouts of jumping exercise per week, with each bout preceded by the ingestion of 15 g hydrolyzed collagen. Before and after the intervention, BMD of various skeletal sites and trabecular bone score of the lumbar spine were assessed by dual-energy X-ray absorptiometry, along with serum bone turnover markers procollagen Type I N propeptide and carboxy-terminal cross-linking telopeptide of Type I collagen. BMD of the femoral neck decreased in CON (from 0.789 ± 0.104 to 0.774 ± 0.095 g/cm2), while being preserved in INT (from 0.803 ± 0.058 to 0.809 ± 0.066 g/cm2; Time × Treatment, p < .01). No differences between treatments were observed for changes in BMD at the total hip, lumbar spine, and whole body (Time × Treatment, p > .05 for all). Trabecular bone score increased from 1.38 ± 0.08 to 1.40 ± 0.09 in CON and from 1.46 ± 0.08 to 1.47 ± 0.08 in INT, respectively (time effect: p < .01), with no differences between treatments (Time × Treatment: p = .33). Serum procollagen Type I N propeptide concentrations decreased to a similar extent in CON (83.6 ± 24.8 to 71.4 ± 23.1 ng/ml) and INT (82.8 ± 30.7 to 66.3 ± 30.6; time effect, p < .001; Time × Treatment, p = .22). Serum carboxy-terminal cross-linking telopeptide of Type I collagen concentrations did not change over time, with no differences between treatments (time effect, p = .08; Time × Treatment, p = .58). In conclusion, frequent short bouts of jumping exercise combined with collagen supplementation beneficially affects femoral neck BMD in elite road-race cyclists.

Open access

The Postprandial Plasma Amino Acid Response Does Not Differ Following the Ingestion of a Solid Versus a Liquid Milk Protein Product in Healthy Adult Females

Glenn A.A. van Lieshout, Jorn Trommelen, Jean Nyakayiru, Janneau van Kranenburg, Joan M. Senden, Lex B. Verdijk, and Luc J.C. van Loon

Dietary protein digestion and amino acid absorption rates are modulated by numerous factors such as the food matrix. It has been speculated that protein ingested in liquid form is more rapidly digested and absorbed when compared with ingestion in solid form. Here, we assessed the postprandial plasma amino acid availability following ingestion of a single bolus of protein provided in either liquid or solid form. Twelve healthy, young females were included in this randomized cross-over study. On two separate test days, participants ingested 20-g milk protein concentrate in solid form (protein bar) or in liquid form (protein drink). Products were composed of matched ingredients and, thereby, had the same macro- and micronutrient composition. On both test days, arterialized blood samples were collected at regular time intervals for up to 4 hr following protein ingestion to assess the postprandial rise in plasma amino acid concentrations. Protein ingestion robustly elevated circulating plasma amino acid concentrations (p < .001), with no significant differences between treatments (p = .088). The incremental area under the curve of the postprandial rise in total plasma amino acid concentrations did not differ following bar versus drink consumption (160 ± 73 vs. 160 ± 71 mmol·L−1·240 min−1, respectively; 95% confidence interval [−37, 37]; Cohen’s d z  = 0.003; p = .992). Ingestion of protein in liquid or solid form does not modulate postprandial amino acid availability in healthy, female adults. Any differences in protein digestion and amino acid absorption due to differences in food matrix are not attributed to the protein being consumed as a bar or as a drink.

Full access

Acute Ketone Monoester Supplementation Impairs 20-min Time-Trial Performance in Trained Cyclists: A Randomized, Crossover Trial

Devin G. McCarthy, Jack Bone, Matthew Fong, Phillippe J.M. Pinckaers, William Bostad, Douglas L. Richards, Luc J.C. van Loon, and Martin J. Gibala

Acute ketone monoester (KE) supplementation can alter exercise responses, but the performance effect is unclear. The limited and equivocal data to date are likely related to factors including the KE dose, test conditions, and caliber of athletes studied. We tested the hypothesis that mean power output during a 20-min cycling time trial (TT) would be different after KE ingestion compared to a placebo (PL). A sample size of 22 was estimated to provide 80% power to detect an effect size d z of 0.63 at an alpha level of .05 with a two-tailed paired t test. This determination considered 2.0% as the minimal important difference in performance. Twenty-three trained cyclists (N = 23; peak oxygen uptake: 65 ± 12 ml·kg−1 min−1; M ± SD), who were regularly cycling >5 hr/week, completed a familiarization trial followed by two experimental trials. Participants self-selected and replicated their diet and exercise for ∼24 hr before each trial. Participants ingested either 0.35 g/kg body mass of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate KE or a flavor-matched PL 30 min before exercise in a randomized, triple-blind, crossover manner. Exercise involved a 15-min warm-up followed by the 20-min TT on a cycle ergometer. The only feedback provided was time elapsed. Preexercise venous [β-hydroxybutyrate] was higher after KE versus PL (2.0 ± 0.6 vs. 0.2 ± 0.1 mM, p < .0001). Mean TT power output was 2.4% (0.6% to 4.1%; mean [95% confidence interval]) lower after KE versus PL (255 ± 54 vs. 261 ± 54 W, p < .01; d z  = 0.60). The mechanistic basis for the impaired TT performance after KE ingestion under the present study conditions remains to be determined.

Open access

Exercise Plus Presleep Protein Ingestion Increases Overnight Muscle Connective Tissue Protein Synthesis Rates in Healthy Older Men

Andrew M. Holwerda, Jorn Trommelen, Imre W.K. Kouw, Joan M. Senden, Joy P.B. Goessens, Janneau van Kranenburg, Annemie P. Gijsen, Lex B. Verdijk, and Luc J.C. van Loon

Protein ingestion and exercise stimulate myofibrillar protein synthesis rates. When combined, exercise further increases the postprandial rise in myofibrillar protein synthesis rates. It remains unclear whether protein ingestion with or without exercise also stimulates muscle connective tissue protein synthesis rates. The authors assessed the impact of presleep protein ingestion on overnight muscle connective tissue protein synthesis rates at rest and during recovery from resistance-type exercise in older men. Thirty-six healthy, older men were randomly assigned to ingest 40 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine-labeled casein protein (PRO, n = 12) or a nonprotein placebo (PLA, n = 12) before going to sleep. A third group performed a single bout of resistance-type exercise in the evening before ingesting 40 g intrinsically-labeled casein protein prior to sleep (EX+PRO, n = 12). Continuous intravenous infusions of L-[ring- 2H5]-phenylalanine and L-[1-13C]-leucine were applied with blood and muscle tissue samples collected throughout overnight sleep. Presleep protein ingestion did not increase muscle connective tissue protein synthesis rates (0.049 ± 0.013 vs. 0.060 ± 0.024%/hr in PLA and PRO, respectively; p = .73). Exercise plus protein ingestion resulted in greater overnight muscle connective tissue protein synthesis rates (0.095 ± 0.022%/hr) when compared with PLA and PRO (p < .01). Exercise increased the incorporation of dietary protein-derived amino acids into muscle connective tissue protein (0.036 ± 0.013 vs. 0.054 ± 0.009 mole percent excess in PRO vs. EX+PRO, respectively; p < .01). In conclusion, resistance-type exercise plus presleep protein ingestion increases overnight muscle connective tissue protein synthesis rates in older men. Exercise enhances the utilization of dietary protein-derived amino acids as precursors for de novo muscle connective tissue protein synthesis during overnight sleep.

Open access

Muscle Mass and Strength Gains Following Resistance Exercise Training in Older Adults 65–75 Years and Older Adults Above 85 Years

Gabriel Nasri Marzuca-Nassr, Andrea Alegría-Molina, Yuri SanMartín-Calísto, Macarena Artigas-Arias, Nolberto Huard, Jorge Sapunar, Luis A. Salazar, Lex B. Verdijk, and Luc J.C. van Loon

Resistance exercise training (RET) can be applied effectively to increase muscle mass and function in older adults (65–75 years). However, it has been speculated that older adults above 85 years are less responsive to the benefits of RET. This study compares the impact of RET on muscle mass and function in healthy older adults 65–75 years versus older adults above 85 years. We subjected 17 healthy older adults 65–75 years (OLDER 65–75, n = 13/4 [female/male]; 68 ± 2 years; 26.9 ± 2.3 kg/m2) and 12 healthy older adults above 85 years (OLDER 85+, n = 7/5 [female/male]; 87 ± 3 years; 26.0 ± 3.6 kg/m2) to 12 weeks of whole-body RET (three times per week). Prior to, and after 6 and 12 weeks of training, quadriceps and lumbar spine vertebra 3 muscle cross-sectional area (computed tomography scan), whole-body lean mass (dual-energy X-ray absorptiometry scan), strength (one-repetition maximum test), and physical performance (timed up and go and short physical performance battery) were assessed. Twelve weeks of RET resulted in a 10% ± 4% and 11% ± 5% increase in quadriceps cross-sectional area (from 46.5 ± 10.7 to 51.1 ± 12.1 cm2, and from 38.9 ± 6.1 to 43.1 ± 8.0 cm2, respectively; p < .001; η2 = .67); a 2% ± 3% and 2% ± 3% increase in whole-body lean mass (p = .001; η2 = .22); and a 38% ± 20% and 46% ± 14% increase in one-repetition maximum leg extension strength (p < .001; η2 = .77) in the OLDER 65–75 and OLDER 85+ groups, respectively. No differences in the responses to RET were observed between groups (Time × Group, all p > .60; all η2 ≤ .012). Physical performance on the short physical performance battery and timed up and go improved (both p < .01; η2 ≥ .22), with no differences between groups (Time × Group, p > .015; η2 ≤ .07). Prolonged RET increases muscle mass, strength, and physical performance in the aging population, with no differences between 65–75 years and 85+ years older adults.

Open access

Coingestion of Collagen With Whey Protein Prevents Postexercise Decline in Plasma Glycine Availability in Recreationally Active Men

Thorben Aussieker, Tom A.H. Janssen, Wesley J.H. Hermans, Andrew M. Holwerda, Joan M. Senden, Janneau M.X. van Kranenburg, Joy P.B. Goessens, Tim Snijders, and Luc J.C. van Loon

Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m−2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged −8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.

Open access

PRESENT 2020: Text Expanding on the Checklist for Proper Reporting of Evidence in Sport and Exercise Nutrition Trials

James A. Betts, Javier T. Gonzalez, Louise M. Burke, Graeme L. Close, Ina Garthe, Lewis J. James, Asker E. Jeukendrup, James P. Morton, David C. Nieman, Peter Peeling, Stuart M. Phillips, Trent Stellingwerff, Luc J.C. van Loon, Clyde Williams, Kathleen Woolf, Ron Maughan, and Greg Atkinson