Search Results
You are looking at 1 - 6 of 6 items for
- Author: Margo Mountjoy x
- Refine by Access: Content accessible to me x
Sherry Robertson and Margo Mountjoy
The syndrome of relative energy deficiency in sport (RED-S) is a clinical entity characterized by low energy availability, which can negatively affect the health and performance of both male and female athletes. The underlying mechanism of RED-S is an inadequacy of dietary energy to support optimal health and performance. This syndrome refers to impaired physiological function, including metabolic rate, menstrual function, bone health, immunity, protein synthesis, and cardiovascular health, with psychological consequences that can either precede (through restrictive dietary habits) or result from RED-S. The term RED-S extends beyond the condition termed the “Female Athlete Triad.” Formerly known as synchronized swimming, artistic swimming is an Olympic sport requiring a high level of fitness as well as technical skill and artistry. The risk of RED-S is high in artistic swimming as it is an aesthetic, judged sport with an emphasis on a lean physique. RED-S is of significant concern in the sport of artistic swimming because of the potential negative effects on physical and mental health as well as consequences on athletic performance. This paper reviews health and performance consequences associated with low energy availability resulting in RED-S in artistic swimming. Medical and nutritional considerations specific to artistic swimming are reviewed, and methods to help detect and manage RED-S are discussed. Prevention and management of RED-S in this athlete population should be a priority for coaches, and the sport medicine professionals working with artistic swimming athletes should utilize the RED-S CAT, a Clinical Assessment Tool for screening and managing RED-S.
Anna K. Melin, Ida A. Heikura, Adam Tenforde, and Margo Mountjoy
The reported prevalence of low energy availability (LEA) in female and male track and field athletes is between 18% and 58% with the highest prevalence among athletes in endurance and jump events. In male athletes, LEA may result in reduced testosterone levels and libido along with impaired training capacity. In female track and field athletes, functional hypothalamic amenorrhea as consequence of LEA has been reported among 60% of elite middle- and long-distance athletes and 23% among elite sprinters. Health concerns with functional hypothalamic amenorrhea include impaired bone health, elevated risk for bone stress injury, and cardiovascular disease. Furthermore, LEA negatively affects recovery, muscle mass, neuromuscular function, and increases the risk of injuries and illness that may affect performance negatively. LEA in track and field athletes may occur due to intentional alterations in body mass or body composition, appetite changes, time constraints, or disordered eating behavior. Long-term LEA causes metabolic and physiological adaptations to prevent further weight loss, and athletes may therefore be weight stable yet have impaired physiological function secondary to LEA. Achieving or maintaining a lower body mass or fat levels through long-term LEA may therefore result in impaired health and performance as proposed in the Relative Energy Deficiency in Sport model. Preventive educational programs and screening to identify athletes with LEA are important for early intervention to prevent long-term secondary health consequences. Treatment for athletes is primarily to increase energy availability and often requires a team approach including a sport physician, sports dietitian, physiologist, and psychologist.