Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Trent Stellingwerff x
  • User-accessible content x
Clear All Modify Search
Full access

Trent Stellingwerff

This case study features an Olympic-level female middle-distance runner implementing a science-based approach to body composition periodization. Data are emerging to suggest that it is not sustainable from a health and/or performance perspective to be at peak body composition year-round, so body composition needs to be strategically periodized. Anthropometric (n = 44), hematological, other health measures, and 1,500-m race performances (n = 83) were periodically assessed throughout a 9-year career. General preparation phase (September to April) featured the athlete at ∼2–4% over ideal competition phase body weight (BW) and body fat (%), with optimal energy availability being prioritized. The competition body composition optimization phase (May to August) included creating an individualized time frame and caloric deficit with various feedback metrics (BW, performance, and hunger) to guide the process. There were significant seasonal fluctuations in anthropometric outcomes between phases (47.3 ± 0.8 vs. 48.3 ± 0.9 kg BW; 53.6 ± 7.8 vs. 61.6 ± 9.7 mm International Society for the Advancement of Kinanthropometry sum of 8 [So8] skinfolds; p < .01), and a significant correlation of decreasing So8 during the peak competition period over her career (r = −.838; p = .018). The range of body composition during the competition period was 46.0–48.0 kg BW and a So8 range was 42.0–55.9 mm. There were also significant positive correlations between slower 1,500-m race times and increasing So8 (r = .437; p < .01), estimated fat mass (r = .445; p < .01), and BW (r = .511; p < .0001). The athlete only had two career injuries. This case study demonstrates a body composition periodization approach that allowed for targeted peak yearly performances, which improved throughout her career, while maximizing training adaptation and long-term athlete health through optimal energy availability.

Open access

Trent Stellingwerff, Ingvill Måkestad Bovim and Jamie Whitfield

Middle-distance runners utilize the full continuum of energy systems throughout training, and given the infinite competition tactical scenarios, this event group is highly complex from a performance intervention point of view. However, this complexity results in numerous potential periodized nutrition interventions to optimize middle-distance training adaptation and competition performance. Middle-distance race intensity is extreme, with 800- to 5,000-m races being at ∼95% to 130% of VO2max. Accordingly, elite middle-distance runners have primarily Type IIa/IIx fiber morphology and rely almost exclusively on carbohydrate (primarily muscle glycogen) metabolic pathways for producing adenosine triphosphate. Consequently, the principle nutritional interventions that should be emphasized are those that optimize muscle glycogen contents to support high glycolytic flux (resulting in very high lactate values, of >20 mmol/L in some athletes) with appropriate buffering capabilities, while optimizing power to weight ratios, all in a macro- and microperiodized manner. From youth to elite level, middle-distance athletes have arduous racing schedules (10–25 races/year), coupled with excessive global travel, which can take a physical and emotional toll. Accordingly, proactive and integrated nutrition planning can have a profound recovery effect over a long race season, as well as optimizing recovery during rounds of championship racing. Finally, with evidence-based implementation and an appropriate risk/reward assessment, several ergogenic aids may have an adaptive and/or performance-enhancing effect in the middle-distance athlete. Given that elite middle-distance athletes undertake ∼400 to 800 training sessions with 10–25 races/year, there are countless opportunities to implement various periodized acute and chronic nutrition-based interventions to optimize performance.

Open access

Jennifer Sygo, Alicia Kendig Glass, Sophie C. Killer and Trent Stellingwerff

Athletes participating in the athletics (track and field) events of jumps, throws, and combined events (CEs; seven-event heptathlon and 10-event decathlon) engage in training and competition that emphasize speed and explosive movements, requiring optimal power–weight ratios. While these athletes represent a wide range of somatotypes, they share an emphasis on Type IIa and IIx muscle fiber typing. In general, athletes competing in jumps tend to have a lower body mass and may benefit from a higher protein (1.5–1.8 g PRO·kg−1·day−1) and lower carbohydrate (3–6 g CHO·kg−1·day−1) diet. Throwers tend to have a higher body mass, but with considerable differences between events. Their intense, whole-body training program suggests higher PRO requirements (1.5–2.2 g PRO·kg−1·day−1), while CHO needs (per kg) are similar to jumpers. The CE athletes must strike a balance between strength and muscle mass for throws and sprints, while maintaining a low enough body mass to maximize performance in jumps and middle-distance events. CE athletes may benefit from a higher PRO (1.5–2 g PRO·kg−1·day−1) and moderate CHO (5–8 g CHO·kg−1·day−1) diet with good energy availability to support multiple daily training sessions. Since they compete over 2 days, well-rehearsed competition-day fueling and recovery strategies are imperative for CE athletes. Depending on their events’ bioenergetic demands, athletes in throws, jumps, and CE may benefit from the periodized use of ergogenic aids, including creatine, caffeine, and/or beta-alanine. The diverse training demands, physiques, and competitive environments of jumpers, throwers, and CE athletes necessitate nutrition interventions that are periodized throughout the season and tailored to the individual needs of the athlete.

Open access

Trent Stellingwerff, James P. Morton and Louise M. Burke

Over the last decade, in support of training periodization, there has been an emergence around the concept of nutritional periodization. Within athletics (track and field), the science and art of periodization is a cornerstone concept with recent commentaries emphasizing the underappreciated complexity associated with predictable performance on demand. Nevertheless, with varying levels of evidence, sport and event specific sequencing of various training units and sessions (long [macrocycle; months], medium [mesocycle; weeks], and short [microcycle; days and within-day duration]) is a routine approach to training periodization. Indeed, implementation of strategic temporal nutrition interventions (macro, meso, and micro) can support and enhance training prescription and adaptation, as well as acute event specific performance. However, a general framework on how, why, and when nutritional periodization could be implemented has not yet been established. It is beyond the scope of this review to highlight every potential nutritional periodization application. Instead, this review will focus on a generalized framework, with specific examples of macro-, meso-, and microperiodization for the macronutrients of carbohydrates, and, by extension, fat. More specifically, the authors establish the evidence and rationale for situations of acute high carbohydrate availability, as well as the evidence for more chronic manipulation of carbohydrates coupled with training. The topic of periodized nutrition has made considerable gains over the last decade but is ripe for further scientific progress and field application.

Full access

Margo L. Mountjoy, Louise M. Burke, Trent Stellingwerff and Jorunn Sundgot-Borgen

Full access

Louise M. Burke, John A. Hawley, Asker Jeukendrup, James P. Morton, Trent Stellingwerff and Ronald J. Maughan

From the breakthrough studies of dietary carbohydrate and exercise capacity in the 1960s through to the more recent studies of cellular signaling and the adaptive response to exercise in muscle, it has become apparent that manipulations of dietary fat and carbohydrate within training phases, or in the immediate preparation for competition, can profoundly alter the availability and utilization of these major fuels and, subsequently, the performance of endurance sport (events >30 min up to ∼24 hr). A variety of terms have emerged to describe new or nuanced versions of such exercise–diet strategies (e.g., train low, train high, low-carbohydrate high-fat diet, periodized carbohydrate diet). However, the nonuniform meanings of these terms have caused confusion and miscommunication, both in the popular press and among the scientific community. Sports scientists will continue to hold different views on optimal protocols of fuel support for training and competition in different endurance events. However, to promote collaboration and shared discussions, a commonly accepted and consistent terminology will help to strengthen hypotheses and experimental/experiential data around various strategies. We propose a series of definitions and explanations as a starting point for a more unified dialogue around acute and chronic manipulations of fat and carbohydrate in the athlete’s diet, noting philosophies of approaches rather than a single/definitive macronutrient prescription. We also summarize some of the key questions that need to be tackled to help produce greater insight into this exciting area of sports nutrition research and practice.

Full access

Ida A. Heikura, Arja L.T. Uusitalo, Trent Stellingwerff, Dan Bergland, Antti A. Mero and Louise M. Burke

We aimed to (a) report energy availability (EA), metabolic/reproductive function, bone mineral density, and injury/illness rates in national/world-class female and male distance athletes and (b) investigate the robustness of various diagnostic criteria from the Female Athlete Triad (Triad), Low Energy Availability in Females Questionnaire, and relative energy deficiency in sport (RED-S) tools to identify risks associated with low EA. Athletes were distinguished according to benchmarks of reproductive function (amenorrheic [n = 13] vs. eumenorrheic [n = 22], low [lowest quartile of reference range; n = 10] versus normal testosterone [n = 14]), and EA calculated from 7-day food and training diaries (< or >30 kcal·kg−1 fat-free mass·day−1). Sex hormones (p < .001), triiodothyronine (p < .05), and bone mineral density (females, p < .05) were significantly lower in amenorrheic (37%) and low testosterone (40%; 15.1 ± 3.0 nmol/L) athletes, and bone injuries were ∼4.5-fold more prevalent in amenorrheic (effect size = 0.85, large) and low testosterone (effect size = 0.52, moderate) groups compared with others. Categorization of females and males using Triad or RED-S tools revealed that higher risk groups had significantly lower triiodothyronine (female and male Triad and RED-S: p < .05) and higher number of all-time fractures (male Triad: p < .001; male RED-S and female Triad: p < .01) as well as nonsignificant but markedly (up to 10-fold) higher number of training days lost to bone injuries during the preceding year. Based on the cross-sectional analysis, current reproductive function (questionnaires/blood hormone concentrations) appears to provide a more objective and accurate marker of optimal energy for health than the more error-prone and time-consuming dietary and training estimation of EA. This study also offers novel findings that athlete health is associated with EA indices.

Open access

James A. Betts, Javier T. Gonzalez, Louise M. Burke, Graeme L. Close, Ina Garthe, Lewis J. James, Asker E. Jeukendrup, James P. Morton, David C. Nieman, Peter Peeling, Stuart M. Phillips, Trent Stellingwerff, Luc J.C. van Loon, Clyde Williams, Kathleen Woolf, Ron Maughan and Greg Atkinson

Open access

Louise M. Burke, Linda M. Castell, Douglas J. Casa, Graeme L. Close, Ricardo J. S. Costa, Ben Desbrow, Shona L. Halson, Dana M. Lis, Anna K. Melin, Peter Peeling, Philo U. Saunders, Gary J. Slater, Jennifer Sygo, Oliver C. Witard, Stéphane Bermon and Trent Stellingwerff

The International Association of Athletics Federations recognizes the importance of nutritional practices in optimizing an Athlete’s well-being and performance. Although Athletics encompasses a diverse range of track-and-field events with different performance determinants, there are common goals around nutritional support for adaptation to training, optimal performance for key events, and reducing the risk of injury and illness. Periodized guidelines can be provided for the appropriate type, amount, and timing of intake of food and fluids to promote optimal health and performance across different scenarios of training and competition. Some Athletes are at risk of relative energy deficiency in sport arising from a mismatch between energy intake and exercise energy expenditure. Competition nutrition strategies may involve pre-event, within-event, and between-event eating to address requirements for carbohydrate and fluid replacement. Although a “food first” policy should underpin an Athlete’s nutrition plan, there may be occasions for the judicious use of medical supplements to address nutrient deficiencies or sports foods that help the athlete to meet nutritional goals when it is impractical to eat food. Evidence-based supplements include caffeine, bicarbonate, beta-alanine, nitrate, and creatine; however, their value is specific to the characteristics of the event. Special considerations are needed for travel, challenging environments (e.g., heat and altitude); special populations (e.g., females, young and masters athletes); and restricted dietary choice (e.g., vegetarian). Ideally, each Athlete should develop a personalized, periodized, and practical nutrition plan via collaboration with their coach and accredited sports nutrition experts, to optimize their performance.