Search Results

You are looking at 1 - 10 of 23 items for :

  • Physical Education and Coaching x
  • User-accessible content x
Clear All
Open access

Øyvind Skattebo, Thomas Losnegard and Hans Kristian Stadheim

Because of the wide range of physiological, biomechanical, and anthropometrical demands in endurance sports, specialization is often considered a prerequisite for reaching an elite performance level. As an example, marathon runners display lower maximal oxygen uptake (VO 2 max) than 5- to 10-km

Open access

David M. Shaw, Fabrice Merien, Andrea Braakhuis, Daniel Plews, Paul Laursen and Deborah K. Dulson

least 12 months and without a history of recurrent gastrointestinal symptoms volunteered to participate in the study (age, 26.7 ± 5.2 years; body mass, 69.6 ± 8.4 kg; height, 1.82 ± 0.09 m; body mass index, 21.2 ± 1.5 kg/m 2 ; VO 2 peak, 63.9 ± 2.5 ml·kg −1 ·min −1 ; W max,  389.3 ± 50.4 W; hours

Open access

Trent Stellingwerff, Ingvill Måkestad Bovim and Jamie Whitfield

 = phosphocreatine; PRO = protein; RFD = rate of force development; suppl. = supplementation; SV = stroke volume; VO 2 max = maximal oxygen consumption. Middle-distance race intensity is extreme, with 800- to 5,000-m races being at ∼95% to 130% of VO 2 max ( Duffield et al., 2005 ), or 75–85% of maximum sprint speed

Open access

Avish P. Sharma, Philo U. Saunders, Laura A. Garvican-Lewis, Brad Clark, Jamie Stanley, Eileen Y. Robertson and Kevin G. Thompson

Purpose:

To determine the effect of training at 2100-m natural altitude on running speed (RS) during training sessions over a range of intensities relevant to middle-distance running performance.

Methods:

In an observational study, 19 elite middle-distance runners (mean ± SD age 25 ± 5 y, VO2max, 71 ± 5 mL · kg–1 · min–1) completed either 4–6 wk of sea-level training (CON, n = 7) or a 4- to 5-wk natural altitude-training camp living at 2100 m and training at 1400–2700 m (ALT, n = 12) after a period of sea-level training. Each training session was recorded on a GPS watch, and athletes also provided a score for session rating of perceived exertion (sRPE). Training sessions were grouped according to duration and intensity. RS (km/h) and sRPE from matched training sessions completed at sea level and 2100 m were compared within ALT, with sessions completed at sea level in CON describing normal variation.

Results:

In ALT, RS was reduced at altitude compared with sea level, with the greatest decrements observed during threshold- and VO2max-intensity sessions (5.8% and 3.6%, respectively). Velocity of low-intensity and race-pace sessions completed at a lower altitude (1400 m) and/or with additional recovery was maintained in ALT, though at a significantly greater sRPE (P = .04 and .05, respectively). There was no change in velocity or sRPE at any intensity in CON.

Conclusion:

RS in elite middle-distance athletes is adversely affected at 2100-m natural altitude, with levels of impairment dependent on the intensity of training. Maintenance of RS at certain intensities while training at altitude can result in a higher perceived exertion.

Open access

Carl Foster

anchors on which we base our understanding will change. At a certain point in my career, the maximal oxygen uptake (VO 2 max) was everything. 2 Athletes with big values for VO 2 max were destined for success; athletes with lower values were supposedly doomed to be second-tier performers. 3 Someone

Open access

Carl Foster, Jose A. Rodriguez-Marroyo and Jos J. de Koning

Training monitoring is about keeping track of what athletes accomplish in training, for the purpose of improving the interaction between coach and athlete. Over history there have been several basic schemes of training monitoring. In the earliest days training monitoring was about observing the athlete during standard workouts. However, difficulty in standardizing the conditions of training made this process unreliable. With the advent of interval training, monitoring became more systematic. However, imprecision in the measurement of heart rate (HR) evolved interval training toward index workouts, where the main monitored parameter was average time required to complete index workouts. These measures of training load focused on the external training load, what the athlete could actually do. With the advent of interest from the scientific community, the development of the concept of metabolic thresholds and the possibility of trackside measurement of HR, lactate, VO2, and power output, there was greater interest in the internal training load, allowing better titration of training loads in athletes of differing ability. These methods show much promise but often require laboratory testing for calibration and tend to produce too much information, in too slow a time frame, to be optimally useful to coaches. The advent of the TRIMP concept by Banister suggested a strategy to combine intensity and duration elements of training into a single index concept, training load. Although the original TRIMP concept was mathematically complex, the development of the session RPE and similar low-tech methods has demonstrated a way to evaluate training load, along with derived variables, in a simple, responsive way. Recently, there has been interest in using wearable sensors to provide high-resolution data of the external training load. These methods are promising, but problems relative to information overload and turnaround time to coaches remain to be solved.

Open access

Stephen Seiler and Øystein Sylta

The purpose of this study was to compare physiological responses and perceived exertion among well-trained cyclists (n = 63) performing 3 different high-intensity interval-training (HIIT) prescriptions differing in work-bout duration and accumulated duration but all prescribed with maximal session effort. Subjects (male, mean ± SD 38 ± 8 y, VO2peak 62 ± 6 mL · kg–1 · min–1) completed up to 24 HIIT sessions over 12 wk as part of a training-intervention study. Sessions were prescribed as 4 × 16, 4 × 8, or 4 × 4 min with 2-min recovery periods (8 sessions of each prescription, balanced over time). Power output, HR, and RPE were collected during and after each work bout. Session RPE was reported after each session. Blood lactate samples were collected throughout the 12 wk. Physiological and perceptual responses during >1400 training sessions were analyzed. HIIT sessions were performed at 95% ± 5%, 106% ± 5%, and 117% ± 6% of 40-min time-trial power during 4 × 16-, 4 × 8-, and 4 × 4-min sessions, respectively, with peak HR in each work bout averaging 89% ± 2%, 91% ± 2%, and 94% ± 2% HRpeak. Blood lactate concentrations were 4.7 ± 1.6, 9.2 ± 2.4, and 12.7 ± 2.7 mmol/L. Despite the common prescription of maximal session effort, RPE and sRPE increased with decreasing accumulated work duration (AWD), tracking relative HR. Only 8% of 4 × 16-min sessions reached RPE 19–20, vs 61% of 4 × 4-min sessions. The authors conclude that within the HIIT duration range, performing at “maximal session effort” over a reduced AWD is associated with higher perceived exertion both acutely and postexercise. This may have important implications for HIIT prescription choices.

Open access

Twan ten Haaf, Selma van Staveren, Erik Oudenhoven, Maria F. Piacentini, Romain Meeusen, Bart Roelands, Leo Koenderman, Hein A.M. Daanen, Carl Foster and Jos J. de Koning

Purpose:

To investigate whether monitoring of easily measurable stressors and symptoms can be used to distinguish early between acute fatigue (AF) and functional overreaching (FOR).

Methods:

The study included 30 subjects (11 female, 19 male; age 40.8 ± 10.8 y, VO2max 51.8 ± 6.3 mL · kg–1 · min–1) who participated in an 8-d cycling event over 1300 km with 18,500 climbing meters. Performance was measured before and after the event using a maximal incremental test. Subjects with decreased performance after the event were classified as FOR, others as AF. Mental and physical well-being, internal training load, resting heart rate, temperature, and mood were measured daily during the event. Differences between AF and FOR were analyzed using mixed-model ANOVAs. Logistic regression was used to determine the best predictors of FOR after 3 and 6 d of cycling.

Results:

Fifteen subjects were classified as FOR and 14 as AF (1 excluded). Although total group changes were observed during the event, no differences between AF and FOR were found for individual monitoring parameters. The combination of questionnaire-based changes in fatigue and readiness to train after 3 d cycling correctly predicted 78% of the subjects as AF or FOR (sensitivity = 79%, specificity = 77%).

Conclusions:

Monitoring changes in fatigue and readiness to train, using simple visual analog scales, can be used to identify subjects likely to become FOR after only 3 d of cycling. Hence, we encourage athlete support staff to monitor not only fatigue but also the subjective integrated mental and physical readiness to perform.

Open access

endurance exercise training. We assessed the impact of protein supplementation during prolonged endurance exercise training on whole-body oxidative capacity (VO 2max ) and endurance exercise performance. Sixty recreationally active males (age: 27±6 y; BMI: 23.8±2.6 kg·m -2 , VO 2max 47±6 mL·min -1 ·kg -1

Open access

Peter Peeling, Martyn J. Binnie, Paul S.R. Goods, Marc Sim and Louise M. Burke

popular supplement initially found to improve oxygen uptake (VO 2 ) kinetics during prolonged submaximal exercise ( Bailey et al., 2009 ). The ingestion of dietary NO 3 – leads to an enhanced nitric oxide (NO) bioavailability via the NO 3 – -nitrite-NO pathway, a reduction catalyzed initially by bacteria