Search Results

You are looking at 1 - 8 of 8 items for :

  • Physical Education and Coaching x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Emma Brooks, Gilles Lamothe, Taniya S. Nagpal, Pascal Imbeault, Kristi Adamo, Jameel Kara, and Éric Doucet

) diet ( Cox & Clarke, 2014 ; Robinson & Williamson, 1980 ). Under all of these circumstances, KBs become a pertinent energy source while glucose is restricted or depleted. Ketosis, or hyperketonaemia, is defined as plasma ketone concentrations that exceed 0.2 mM, according to Robinson and Williamson

Open access

Oliver J. Peacock, Javier T. Gonzalez, Simon P. Roberts, Alan Smith, Scott Drawer, and Keith A. Stokes

and both made an estimated 16  kJ/kg body mass (BM) available for metabolism (total energy intake 1,528 ± 145 kJ). The ketone monoester was provided at a total dose of 590 mg/kg BM based on pilot data showing that this dosing level induces a sustained moderate ketosis (blood BHB of ∼2–3 mmol/L) that

Full access

Devin G. McCarthy, Jack Bone, Matthew Fong, Phillippe J.M. Pinckaers, William Bostad, Douglas L. Richards, Luc J.C. van Loon, and Martin J. Gibala

Nutritional ketosis induced through the ingestion of ketogenic supplements can alter physiological responses to exercise ( Evans et al., 2017 ). This practice has also been purported to enhance performance, at least under selected conditions, although the precise mechanistic basis is unclear

Full access

Louise M. Burke, John A. Hawley, Asker Jeukendrup, James P. Morton, Trent Stellingwerff, and Ronald J. Maughan

CHO to avoid sustained ketosis. • Typical intake = 15–20% energy from CHO (<2.5 g −1 ·kg −1 ·day −1 ), 15–20% protein, 60–65% fat in combination with a moderate-endurance training volume (>5 hr/week). • Deprivation of CHO for muscle fuel needs while consuming high amounts of dietary fat causes

Full access

Joanne G. Mirtschin, Sara F. Forbes, Louise E. Cato, Ida A. Heikura, Nicki Strobel, Rebecca Hall, and Louise M. Burke

moderate protein intake (<∼2 g/kg BM) to achieve chronic ketosis requires the elimination of many staple foods from the standard Western diet (e.g., most fruit, starchy vegetables and legumes, cereal products) and restrictions on the serving sizes of others. For example, there are portion limits on meats

Free access

Alannah K.A. McKay, Alice M. Wallett, Andrew J. McKune, Julien D. Périard, Philo Saunders, Jamie Whitfield, Nicolin Tee, Ida A. Heikura, Megan L.R. Ross, Avish P. Sharma, Ricardo J.S. Costa, and Louise M. Burke

>0.5 mM on the morning of the Adaptation trial (range 0.6–2.6 mM) confirming ketosis ( Burke et al., 2021 ). Table 3 Physiological and Environmental Characteristics During the 25 km-Long Walk Protocol at Baseline and Adaptation in Athletes Adhering to the CON, LCHF, and LEA Dietary Intervention

Open access

Romain Meeusen and Lieselot Decroix

nutritional ketosis on cognitive outcomes in mild to moderate AD and in mild cognitive impairment. While this effect may be attributable in part to correction of hyperinsulinemia, other mechanisms associated with ketosis, such as reduced inflammation and enhanced energy metabolism, also may have contributed

Free access

Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), The University of Oxford, Oxford, England Exogenous ketosis achieved through ingestion of the ketone monoester (KME) alters metabolic responses to exercise, but ergogenic effects on performance are equivocal. It may be that blood ketone levels