Search Results

You are looking at 1 - 10 of 99 items for :

  • "subjective" x
  • User-accessible content x
Clear All
Open access

Twan ten Haaf, Selma van Staveren, Erik Oudenhoven, Maria F. Piacentini, Romain Meeusen, Bart Roelands, Leo Koenderman, Hein A.M. Daanen, Carl Foster and Jos J. de Koning

Purpose:

To investigate whether monitoring of easily measurable stressors and symptoms can be used to distinguish early between acute fatigue (AF) and functional overreaching (FOR).

Methods:

The study included 30 subjects (11 female, 19 male; age 40.8 ± 10.8 y, VO2max 51.8 ± 6.3 mL · kg–1 · min–1) who participated in an 8-d cycling event over 1300 km with 18,500 climbing meters. Performance was measured before and after the event using a maximal incremental test. Subjects with decreased performance after the event were classified as FOR, others as AF. Mental and physical well-being, internal training load, resting heart rate, temperature, and mood were measured daily during the event. Differences between AF and FOR were analyzed using mixed-model ANOVAs. Logistic regression was used to determine the best predictors of FOR after 3 and 6 d of cycling.

Results:

Fifteen subjects were classified as FOR and 14 as AF (1 excluded). Although total group changes were observed during the event, no differences between AF and FOR were found for individual monitoring parameters. The combination of questionnaire-based changes in fatigue and readiness to train after 3 d cycling correctly predicted 78% of the subjects as AF or FOR (sensitivity = 79%, specificity = 77%).

Conclusions:

Monitoring changes in fatigue and readiness to train, using simple visual analog scales, can be used to identify subjects likely to become FOR after only 3 d of cycling. Hence, we encourage athlete support staff to monitor not only fatigue but also the subjective integrated mental and physical readiness to perform.

Open access

Justin L. Rush, Lindsey K. Lepley, Steven Davi and Adam S. Lepley

quadriceps strength and voluntary activation were also present in both the active tDCS and sham conditions when observing the pre and post time points. There were no differences in subjective scoring for the KOOS Pn and KOOS Sx. Both VL and VM %EMG max activity significantly declined following the 20-minute

Full access

Heidi J. Syväoja, Anna Kankaanpää, Jouni Kallio, Harto Hakonen, Janne Kulmala, Charles H. Hillman, Anu-Katriina Pesonen and Tuija H. Tammelin

model, further accounting for possible indirect associations. The purpose of the present study was to determine the associations of subjectively and objectively measured PA and SB, including both screen-based and nonscreen-based ST, with AA. We further examined whether PA or SB has indirect associations

Full access

Monna Arvinen-Barrow, Nathan Maresh and Jennifer Earl-Boehm

benefits of using AVG in the rehabilitation of acute LAS. Overall, the results from the 2 cases revealed that the 2 balance training protocols (AVG and TRAD) were effective in restoring patient’s balance to functional levels. More specifically, both objective measures (BESS and SEBT) and subjective

Open access

Maximilian Pelka, Alexander Ferrauti, Tim Meyer, Mark Pfeiffer and Michael Kellmann

A recovery process with optimal prerequisites that is interrupted is termed disrupted recovery. Whether this process has an influence on performance-related factors needs to be investigated. Therefore, the aim of this study was to examine how a short disturbance of a recovery phase is assessed and whether subsequent repeated-sprint performance is affected by it. A quasi-experimental 2 × 2-factor crossover design with 34 sport-science undergraduate students (age 20.3 ± 2.1 y) was applied. Factors were the type of intervention (power nap vs systematic breathing; between-subjects) and the experimental condition (disturbed vs nondisturbed break; within-subject). Repeated-sprint performance was measured through 6 × 4-s sprint protocols (with 20-s breaks) before and after a 25-min recovery break on 2 test days. Subjective evaluation of the interventions was measured through the Short Recovery and Stress Scale and a manipulation check assessing whether participants experienced the recovery phase as efficacious and pleasant. Regarding the objective data, no significant difference between sprint performances in terms of average peak velocity (m/s) on the treadmill was found. The manipulation check revealed that disturbed conditions were rated significantly lower than regular conditions in terms of appreciation, t 31 = 3.09, P = .01. Short disturbances of recovery do not seem to affect subsequent performance; nevertheless, participants assessed disturbed conditions more negatively than regular conditions. In essence, the findings indicate a negligible role of short interruptions on an objective level. Subjectively, they affected the performance-related assessment of the participants and should be treated with caution.

Open access

Andrew Murray

While historically adolescents were removed from their parents to prepare to become warriors, this process repeats itself in modern times but with the outcome being athletic performance. This review considers the process of developing athletes and managing load against the backdrop of differing approaches of conserving and maximizing the talent available. It acknowledges the typical training “dose” that adolescent athletes receive across a number of sports and the typical “response” when it is excessive or not managed appropriately. It also examines the best approaches to quantifying load and injury risk, acknowledging the relative strengths and weaknesses of subjective and objective approaches. Making evidence-based decisions is emphasized, while the appropriate monitoring techniques are determined by both the sporting context and individual situation. Ultimately a systematic approach to training-load monitoring is recommended for adolescent athletes to both maximize their athletic development and allow an opportunity for learning, reflection, and enhancement of performance knowledge of coaches and practitioners.

Open access

Marco Cardinale and Matthew C. Varley

The need to quantify aspects of training to improve training prescription has been the holy grail of sport scientists and coaches for many years. Recently, there has been an increase in scientific interest, possibly due to technological advancements and better equipment to quantify training activities. Over the last few years there has been an increase in the number of studies assessing training load in various athletic cohorts with a bias toward subjective reports and/or quantifications of external load. There is an evident lack of extensive longitudinal studies employing objective internal-load measurements, possibly due to the cost-effectiveness and invasiveness of measures necessary to quantify objective internal loads. Advances in technology might help in developing better wearable tools able to ease the difficulties and costs associated with conducting longitudinal observational studies in athletic cohorts and possibly provide better information on the biological implications of specific external-load patterns. Considering the recent technological developments for monitoring training load and the extensive use of various tools for research and applied work, the aim of this work was to review applications, challenges, and opportunities of various wearable technologies.

Open access

Iñigo Mujika

Training quantification is basic to evaluate an endurance athlete’s responses to training loads, ensure adequate stress/recovery balance, and determine the relationship between training and performance. Quantifying both external and internal workload is important, because external workload does not measure the biological stress imposed by the exercise sessions. Generally used quantification methods include retrospective questionnaires, diaries, direct observation, and physiological monitoring, often based on the measurement of oxygen uptake, heart rate, and blood lactate concentration. Other methods in use in endurance sports include speed measurement and the measurement of power output, made possible by recent technological advances such as power meters in cycling and triathlon. Among subjective methods of quantification, rating of perceived exertion stands out because of its wide use. Concurrent assessments of the various quantification methods allow researchers and practitioners to evaluate stress/recovery balance, adjust individual training programs, and determine the relationships between external load, internal load, and athletes’ performance. This brief review summarizes the most relevant external- and internal-workload-quantification methods in endurance sports and provides practical examples of their implementation to adjust the training programs of elite athletes in accordance with their individualized stress/recovery balance.

Open access

Amy R. Barchek, Shelby E. Baez, Matthew C. Hoch and Johanna M. Hoch

physical activity is musculoskeletal injury including injuries to the knee 5 – 7 and ankle. 8 Most often subjective measures of physical activity have been utilized in these populations, including the Tegner activity scale 9 and the Marx activity scale. 10 However, most recently objective measures of

Open access

Natalie L. Myers, Guadalupe Mexicano and Kristin V. Aguilar

exertion (sRPE). sRPE is quantified by multiplying training session duration (in minutes) by rate of perceived exertion (RPE), a subjective index of effort often measured on a scale of 0 to 10. RPE is a valid measure and can be easily implemented into any clinical setting, making it a desirable form of