Search Results

You are looking at 11 - 12 of 12 items for

  • Author: Jordan L. Fox x
  • All content x
Clear All Modify Search
Restricted access

Markus N.C. Williams, Vincent J. Dalbo, Jordan L. Fox, Cody J. O’Grady, and Aaron T. Scanlan

Purpose: To compare weekly training and game demands according to playing position in basketball players. Methods: A longitudinal, observational study was adopted. Semiprofessional, male basketball players categorized as backcourt (guards; n = 4) and frontcourt players (forwards/centers; n = 4) had their weekly workloads monitored across an entire season. External workload was determined using microsensors and included PlayerLoad (PL) and inertial movement analysis variables. Internal workload was determined using heart rate to calculate absolute and relative summated-heart-rate-zones workload and rating of perceived exertion (RPE) to calculate session-RPE workload. Comparisons between weekly training and game demands were made using linear mixed models and effect sizes in each positional group. Results: In backcourt players, higher relative PL (P = .04, very large) and relative summated-heart-rate-zones workload (P = .007, very large) were evident during training, while greater session-RPE workload (P = .001, very large) was apparent during games. In frontcourt players, greater PL (P < .001, very large), relative PL (P = .019, very large), peak PL intensities (P < .001, moderate), high-intensity inertial movement analysis events (P = .002, very large), total inertial movement analysis events (P < .001, very large), summated-heart-rate-zones workload (P < .001, very large), RPE (P < .001, very large), and session-RPE workload (P < .001, very large) were evident during games. Conclusions: Backcourt players experienced similar demands between training and games across several variables, with higher average workload intensities during training. Frontcourt players experienced greater demands across all variables during games than training. These findings emphasize the need for position-specific preparation strategies leading into games in basketball teams.

Restricted access

Cody J. O’Grady, Jordan L. Fox, Daniele Conte, Davide Ferioli, Aaron T. Scanlan, and Vincent J. Dalbo

Purpose: Games-based drills are the predominant form of training adopted during basketball practice. As such, researchers have begun to quantify the physical, physiological, and perceptual demands of different games-based drill formats. However, study methodology has not been systematically reported across studies, limiting the ability to form conclusions from existing research. The authors developed this call to action to draw attention to the current standard of methodological reporting in basketball games-based drill research and establish a systematic reporting standard the authors hope will be utilized in future research. The Basketball Games-Based Drill Methodical Reporting Checklist (BGBDMRC) was developed to encourage the systematic reporting of games-based drill methodology. The authors used the BGBDMRC to evaluate the current methodological reporting standard of studies included in their review published in the International Journal of Sports Physiology and Performance, “A Systematic Review of the External and Internal Workloads Experienced During Games-Based Drills in Basketball Players” (2020), which highlighted this issue. Of the 17 studies included in their review, only 38% (±18%) of applicable checklist items were addressed across included studies, which is problematic as checklist items are essential for study replication. Conclusions: The current standard of methodological reporting in basketball games-based drill research is insufficient to allow for replication of examined drills in future research or the application of research outcomes to practice. The authors implore researchers to adopt the BGBDMRC to improve the quality and reproducibility of games-based drill research and increase the translation of research findings to practice.