Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Danielle L. Gyemi x
  • All content x
Clear All Modify Search
Restricted access

Danielle L. Gyemi, Charles Kahelin, Nicole C. George, and David M. Andrews

Accurate prediction of wobbling mass (WM), fat mass (FM), lean mass (LM), and bone mineral content (BMC) of living people using regression equations developed from anthropometric measures (lengths, circumferences, breadths, skinfolds) has previously been reported, but only for the extremities. Multiple linear stepwise regression was used to generate comparable equations for the head, neck, trunk, and pelvis of young adults (38 males, 38 females). Equations were validated using actual tissue masses from an independent sample of 13 males and 13 females by manually segmenting full-body dual-energy x-ray absorptiometry scans. Prediction equations exhibited adjusted R2 values ranging from .249 to .940, with more explained variance for LM and WM than BMC and FM, especially for the head and neck. Mean relative errors between predicted and actual tissue masses ranged from −11.07% (trunk FM) to 7.61% (neck FM). Actual and predicted tissue masses from all equations were significantly correlated (R2 = .329 to .937), except head BMC (R2 = .046). These results show promise for obtaining in-vivo head, neck, trunk, and pelvis tissue mass estimates in young adults. Further research is needed to improve head and neck FM and BMC predictions and develop tissue mass prediction equations for older populations.