Search Results

You are looking at 11 - 20 of 78 items for :

  • "amenorrhea" x
  • All content x
Clear All
Restricted access

Jason D. Vescovi and Jaci L. VanHeest

This observational case study examined the association of inter- and intraday energy intake and exercise energy expenditure with bone health, menstrual status and hematological factors in a female triathlete. The study spanned 7 months whereby energy intake and exercise energy expenditure were monitored three times (13 d); 16 blood samples were taken, urinary hormones were assessed for 3 months, and bone mineral density was measured twice. Energy availability tended to be sustained below 30 kcal/kg FFM/d and intraday energy intake patterns were often “back-loaded” with approximately 46% of energy consumed after 6 p.m. Most triiodothyronine values were low (1.1–1.2nmol/L) and supportive of reduced energy availability. The athlete had suppressed estradiol (105.1 ± 71.7pmol/L) and progesterone (1.79 ±1.19nmol/L) concentrations as well as urinary sex-steroid metabolites during the entire monitoring period. Lumbar spine (L1-L4) bone mineral density was low (age-matched Z-score −1.4 to −1.5). Despite these health related maladies the athlete was able to perform typical weekly training loads (swim: 30–40 km, bike: 120–300 km, run 45–70 km) and was competitive as indicated by her continued improvement in ITU World Ranking during and beyond the assessment period. There is a delicate balance between health and performance that can become blurred especially for endurance athletes. Education (athletes, coaches, parents) and continued monitoring of specific indicators will enable evidence-based recommendations to be provided and help reduced the risk of health related issues while maximizing performance gains. Future research needs to longitudinally examine how performance on standardized tests in each discipline (e.g., 800-m swim, 20-km time trial, 5-km run) is impacted when aspects of the female athlete triad are present.

Restricted access

Katherine A. Beals and Melinda M. Manore

This study examined the prevalence of and relationship between the disorders of the female athlete triad in collegiate athletes participating in aesthetic, endurance, or team/anaerobic sports. Participants were 425 female collegiate athletes from 7 universities across the United States. Disordered eating, menstrual dysfunction, and musculoskeletal injuries were assessed by a health/medical, dieting and menstrual history questionnaire, the Eating Attitudes Test (EAT-26), and the Eating Disorder Inventory Body Dissatisfaction Subscale (EDI-BD). The percentage of athletes reporting a clinical diagnosis of anorexia and bulimia nervosa was 3.3% and 2.3%, respectively; mean (±SD) EAT and EDI-BD scores were 10.6 ± 9.6 and 9.8 ± 7.6, respectively. The percentage of athletes with scores indicating “at-risk” behavior for an eating disorder were 15.2% using the EAT-26 and 32.4% using the EDI-BD. A similar percentage of athletes in aesthetic, endurance, and team/anaerobic sports reported a clinical diagnosis of anorexia or bulimia. However, athletes in aesthetic sports scored higher on the EAT-26 (13.5 ± 10.9) than athletes in endurance (10.0 ± 9.3) or team/anaerobic sports (9.9 ± 9.0, p < .02); and more athletes in aesthetic versus endurance or team/anaerobic sports scored above the EAT-26 cut-off score of 20 (p < .01). Menstrual irregularity was reported by 31% of the athletes not using oral contraceptives, and there were no group differences in the prevalence of self-reported menstrual irregularity. Muscle and bone injuries sustained during the collegiate career were reported by 65.9% and 34.3% of athletes, respectively, and more athletes in aesthetic versus endurance and team/anaerobic sports reported muscle (p = .005) and/or bone injuries (p < .001). Athletes “at risk” for eating disorders more frequently reported menstrual irregularity (p = .004) and sustained more bone injuries (p = .003) during their collegiate career. These data indicate that while the prevalence of clinical eating disorders is low in female collegiate athletes, many are “at risk” for an eating disorder, which places them at increased risk for menstrual irregularity and bone injuries.

Restricted access

Karen Myrick, Richard Feinn, and Meaghan Harkins

Restricted access

Christine A. Dueck, Kathleen S. Matt, Melinda M. Manore, and James S. Skinner

The purpose of this study was to determine the effect of a 15-week diet and exercise intervention program on energy balance, hormonal profiles, body composition, and menstrual function of an amenorrheic endurance athlete. The intervention program reduced training 1 day/week and included the use of a sport nutrition beverage providing 360 kcal/day. Three eumenorrheic athletes served as a comparison group and were monitored over the same 15-week period. The amenorrheic athlete experienced a transition from negative to positive energy balance, increased body fat from 8.2 to 14.4%, increased fasting luteinizing hormone (LH) from 3.9 to 7.3 mlU/ml, and decreased fasting cortisol from 41.2 to 33.2 pg/dl. The eumenorrheic subjects showed a 0.4% reduction in body fat, a decrease in follicular phase levels of LH from 7.9 to 6.5 mlU/ml, and no change in cortisol. These results suggest that nonpharmacological treatment can contribute to reestablishing normal hormonal profiles and menstrual cyclicity in amenorrheic athletes.

Restricted access

Christine A. Dueck, Melinda M. Manore, and Kathleen S. Matt

The cessation of menstrual function in the female athlete may reflect her inability to adapt to the environmental and lifestyle stressors associated with training and competition. As society's emphasis on thinness, dieting, and exercise continues to increase, so will the incidence of menstrual dysfunction in active females. Unfortunately, some individuals view athletic menstrual dysfunction as a benign consequence of strenuous exercise. Conversely, it is most likely a strong indicator of overtraining and a marker for future decrements in performance, and it can have long-term health consequences. Thus, it is imperative that the active female be appropriately educated regarding the adverse consequences of menstrual dysfunction and the interventions available. This paper focuses on the most current information regarding athletic menstrual dysfunction and its multifactorial etiology, especially the role of energy drain. In addition, common misconceptions, adverse health and performance effects, and available treatment options are discussed.

Restricted access

Charlotte P. Guebels, Lynn C. Kam, Gianni F. Maddalozzo, and Melinda M. Manore

It is hypothesized that exercise-related menstrual dysfunction (ExMD) results from low energy availability (EA), defined as energy intake (EI)—exercise energy expenditure (EEE). When EI is too low, resting metabolic rate (RMR) may be reduced to conserve energy.

Purpose:

To measure changes in RMR and EA, using four methods to quantify EEE, before/after a 6-month diet intervention aimed at restoring menses in women with ExMD; eumenorrheic (Eumen) active controls (n = 9) were also measured.

Methods:

Active women with ExMD (n = 8) consumed +360 kcal/d (supplement) for 6 months; RMR was measured 2 times at 0 months/6 months. EI and total energy expenditure (TEE) were estimated using 7-day diet/activity records, with EA assessed using four methods to quantify EEE.

Results:

At baseline, groups did not differ for age, gynecological age, body weight, lean/fat mass, VO2max, EI and EA, but mean TEE was higher in ExMD (58.3 ± 4.4kcal/kgFFM/d; Eumen = 50.6 ± 2.4; p < .001) and energy balance (EB) more negative (–10.3 ± 6.9 kcal/kgFFM/d; Eumen=-3.0 ± 9.7; p = .049). RMR was higher in ExMD (31.3 ± 1.8 kcal/kgFFM/d) vs. Eumen (29.1 ± 1.9; p < .02). The intervention increased weight (1.6 ± 2.0kg; p = .029), but there were no significant changes in EA (0-month range = 28.2–36.7 kcal/kgFFM/d; 6-month range = 30.0–45.4; p > .05), EB (6 months = –0.7 ± 15.1 kcal/kgFFM/d) or RMR (0 months = 1515 ± 142; 6 months = 1522 ± 134 kcal/d). Assessment of EA varied dramatically (~30%) by method used.

Conclusions:

For the ExMD group, EI and weight increased with +360 kcal/d for 6 months, but there were no significant changes in EB, EA or RMR. No threshold EA value was associated with ExMD. Future research should include TEE, EB and clearly quantifying EEE (e.g.,>4 MET) if EA is measured.

Restricted access

Kathryn H. Myburgh, Claire Berman, Illana Novick, Timothy D. Noakes, and Estelle V. Lambert

We studied 21 ballet dancers aged 19.4 ± 1.4 years, hypothesizing that undernu-trition was a major factor in menstrual irregularity in this population. Menstrual history was determined by questionnaire. Eight dancers had always been regular (R). Thirteen subjects had a history of menstrual irregularity (HI). Of these, 2 were currently regularly menstruating, 3 had short cycles, 6 were oligomenorrheic, and 2 were amenorrheic. Subjects completed a weighed dietary record and an Eating Attitudes Test (EAT). The following physiological parameters were measured: body composition by anthropometry, resting metabolic rate (RMR) by open-circuit indirect calorimetry, and serum thyroid hormone concentrations by radioimmunoassay. R subjects had significantly higher RMR than HI subjects. Also, HI subjects had lower RMR than predicted by fat-free mass, compared to the R subjects. Neitherreported energy intake nor serum thyroid hormone concentrations were different between R and HI subjects. EAT scores varied and were not different between groups. We concluded that in ballet dancers, low RMR is more strongly associated with menstrual irregularity than is currentreported energy intake or serum thyroid hormone concentrations.

Restricted access

Mikkel Oxfeldt, Line B. Dalgaard, Astrid A. Jørgensen, and Mette Hansen

, improved knowledge within this field will benefit the female athlete. Menstrual disturbances (MD) are common; yet, the reported prevalence varies markedly between studies. 5 MD includes primary (absence of first menstruation when >15 y of age) and secondary amenorrhea (absence of menstruation after

Open access

Anna K. Melin, Ida A. Heikura, Adam Tenforde, and Margo Mountjoy

athletes with functional hypothalamic amenorrhea (FHA) spent more time in a catabolic state compared with eumenorrheic athletes ( Fahrenholtz et al., 2018 ) and demonstrate increased catabolic markers in male endurance athletes ( Torstveit et al., 2018 ). Prevalence of LEA, DE, and EDs in Athletics

Restricted access

Michelle T. Barrack, Marta D. Van Loan, Mitchell Rauh, and Jeanne F. Nichols

most severe outcome including functional hypothalamic amenorrhea ( Chan & Mantzoros, 2005 ; De Souza et al., 2014 ; Nattiv et al., 2007 ). Several studies measuring EA in female athletes have reported higher estimates of low EA (<30 kcal·kg fat free mass −1 ·day −1 ) between 20% and 100% in ballet