Search Results

You are looking at 1 - 10 of 22 items for :

  • "total testosterone" x
  • Sport and Exercise Science/Kinesiology x
  • All content x
Clear All
Restricted access

Arny A. Ferrando and Nancy R. Green

The effect of boron supplementation was investigated in 19 male bodybuilders, ages 20–27 years. Ten were given a 2.5-mg boron supplement while 9 were given a placebo every day for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on Days 1 and 49 of the study. Plasma boron values were significantly (p<0.05) different as the experimental group increased from (±SD) 20.1 ±7.7 ppb pretest to 32.6 ±27.6 ppb posttest, while the control group mean decreased from 15.1 ±14.4 ppb pretest to 6.3 ±5.5 ppb posttest. Analysis of variance indicated no significant effect of boron supplementation on any of the dependent variables. Both groups demonstrated significant increases in total testosterone, lean body mass, 1-RM squat, and 1-RM bench press. The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser trained bodybuilders, and that boron supplementation had no effect on these measures.

Restricted access

Michelle S. Rockwell, Madlyn I. Frisard, Janet W. Rankin, Jennifer S. Zabinsky, Ryan P. Mcmillan, Wen You, Kevin P. Davy, and Matthew W. Hulver

beginning the study. Figure 1 —Experimental design. VITD = 5,000 IU of vitamin D 3 ; PTH = parathyroid hormone; fT = free testosterone; tT = total testosterone; SHBG = sex hormone-binding globulin; IGF-1 = insulin-like growth factor 1; DXA = dual-energy X-ray absorptiometry. Participants Male and female

Restricted access

David R. Hooper, William J. Kraemer, Rebecca L. Stearns, Brian R. Kupchak, Brittanie M. Volk, William H. DuPont, Carl M. Maresh, and Douglas J. Casa

plasma samples were then shipped on dry ice back to the University of Connecticut’s human performance lab for later analysis. Total testosterone was analyzed by ELISA (Calbiotech, Spring Valley, CA), with sensitivity of 0.8 nmol·L −1 , intraassay coefficient of variation (CV) of 4.2%, and interassay CV

Restricted access

Colin Wilborn, Lem Taylor, Chris Poole, Cliffa Foster, Darryn Willoughby, and Richard Kreider

The purpose of this study was to determine the effects of an alleged aromatase and 5-α reductase inhibitor (AI) on strength, body composition, and hormonal profiles in resistance-trained men. Thirty resistance-trained men were randomly assigned in a double-blind manner to ingest 500 mg of either a placebo (PL) or AI once per day for 8 wk. Participants participated in a 4-d/wk resistance-training program for 8 wk. At Weeks 0, 4, and 8, body composition, 1-repetition-maximum (1RM) bench press and leg press, muscle endurance, anaerobic power, and hormonal profiles were assessed. Statistical analyses used a 2-way ANOVA with repeated measures for all criterion variables (p ≤ .05). Significant Group × Time interaction effects occurred over the 8-wk period for percent body fat (AI: –1.77% ± 1.52%, PL: –0.55% ± 1.72%; p = .048), total testosterone (AI: 0.97 ± 2.67 ng/ml, PL: –2.10 ± 3.75 ng/ml; p = .018), and bioavailable testosterone (AI: 1.32 ± 3.45 ng/ml, PL: –1.69 ± 3.94 ng/ml; p = .049). Significant main effects for time (p ≤ .05) were noted for bench- and leg-press 1RM, lean body mass, and estradiol. No significant changes were detected among groups for Wingate peak or mean power, total body weight, dihydrotestosterone, hemodynamic variables, or clinical safety data (p > .05). The authors concluded that 500 mg of daily AI supplementation significantly affected percent body fat, total testosterone, and bioavailable testosterone compared with a placebo in a double-blind fashion.

Restricted access

Gregory A. Brown, Matthew D. Vukovich, Tracy A. Reifenrath, Nathaniel L. Uhl, Kerry A. Parsons, Rick L. Sharp, and Douglas S. King

The effects of androgen precursors, combined with herbal extracts designed to enhance testosterone formation and reduce conversion of androgens to estrogens was studied in young men. Subjects performed 3 days of resistance training per week for 8 weeks. Each day during Weeks 1,2,4,5,7, and 8, subjects consumed either placebo (PL; n = 10) or a supplement (ANDRO-6; n = 10), which contained daily doses of 300 mg androstenedione, 150 mg DHEA, 750 mg Tribulus terrestris, 625 mg Chrysin, 300 mg Indole-3-carbinol, and 540 mg Saw palmetto. Serum androstenedione concentrations were higher in ANDRO-6 after 2,5, and 8 weeks (p < .05), while serum concentrations of free and total testosterone were unchanged in both groups. Serum estradiol was elevated at Weeks 2, 5, and 8 in ANDRO-6 (p < .05), and serum estrone was elevated at Weeks 5 and 8 (p < .05). Muscle strength increased (p < .05) similarly from Weeks 0 to 4, and again from Weeks 4 to 8 in both treatment groups. The acute effect of one third of the daily dose, of ANDRO-6 and PL was studied in 10 men (23±4years). Serum androstenedione concentrations were elevated (p < .05) in ANDRO-6 from 150 to 360 min after ingestion, while serum free or total testosterone concentrations were unchanged. These data provide evidence that the addition of these herbal extracts to androstenedione does not result in increased serum testosterone concentrations, reduce the estrogenic effect of androstenedione, and does not augment the adaptations to resistance training.

Restricted access

Darryn S. Willoughby, Colin Wilborn, Lemuel Taylor, and William Campbell

This study examined the effects of an aromatase-inhibiting nutritional supplement on serum steroid hormones, body composition, and clinical safety markers. Sixteen eugonadal young men ingested either Novedex XT™ or a placebo daily for 8 wk, followed by a 3-wk washout period. Body composition was assessed and blood and urine samples obtained at weeks 0, 4, 8, and 11. Data were analyzed by 2-way repeated-measures ANOVA. Novedex XT resulted in average increases of 283%, 625%, 566%, and 438% for total testosterone (P = 0.001), free testosterone (P = 0.001), dihydrotestosterone (P = 0.001), and the testosterone:estrogen ratio (P = 0.001), respectively, whereas fat mass decreased 3.5% (P = 0.026) during supplementation. No significant differences were observed in blood and urinary clinical safety markers or for any of the other serum hormones (P > 0.05). This study indicates that Novedex XT significantly increases serum androgen levels and decreases fat mass.

Restricted access

James A. Betts, Milou Beelen, Keith A. Stokes, Wim H.M. Saris, and Luc J.C. van Loon

Nocturnal endocrine responses to exercise performed in the evening and the potential role of nutrition are poorly understood. To gain novel insight, 10 healthy men ingested carbohydrate with (C+P) and without (C) protein in a randomized order and double-blind manner during 2 hr of interval cycling followed by resistancetype exercise and into early postexercise recovery. Blood samples were obtained hourly throughout 9 hr of postexercise overnight recovery for analysis of key hormones. Muscle samples were taken from the vastus lateralis before and after exercise and then again the next morning (7 a.m.) to calculate mixed-muscle protein fractional synthetic rate (FSR). Overnight plasma hormone concentrations were converted into overall responses (expressed as area under the concentration curve) and did not differ between treatments for either growth hormone (1,464 ± 257 vs. 1,432 ± 164 pg/ml · 540 min) or total testosterone (18.3 ± 1.2 vs. 17.9 ± 1.2 nmol/L · 540 min, C and C+P, respectively). In contrast, the overnight cortisol response was higher with C+P (102 ± 11 nmol/L · 540 min) than with C (81 ± 8 nmol/L · 540 min; p = .02). Mixed-muscle FSR did not differ between C and C+P during overnight recovery (0.062% ± 0.006% and 0.062% ± 0.009%/hr, respectively) and correlated significantly with the plasma total testosterone response (r = .7, p < .01). No correlations with FSR were apparent for the response of growth hormone (r = –.2, p = .4), cortisol (r = .1, p = .6), or the ratio of testosterone to cortisol (r = .2, p = .5). In conclusion, protein ingestion during and shortly after exercise does not modulate the endocrine response or muscle protein synthesis during overnight recovery.

Restricted access

Nicholas A. Ratamess, Jay R. Hoffman, Ryan Ross, Miles Shanklin, Avery D. Faigenbaum, and Jie Kang

The authors aimed to examine the acute hormonal and performance responses to resistance exercise with and without prior consumption of an amino acid/creatine/energy supplement. Eight men performed a resistance-exercise protocol at baseline (BL), 20 min after consuming a supplement (S) consisting of essential amino acids, creatine, taurine, caffeine, and glucuronolactone or a maltodextrin placebo (P). Venous blood samples were obtained before and immediately after (IP), 15 min (15P), and 30 min (30P) after each protocol. Area under the curve of resistance-exercise volume revealed that BL was significantly less than S (10%) and P (8.6%). For fatigue rate, only S (18.4% ± 12.0%) was significantly lower than BL (32.9% ± 8.4%). Total testosterone (TT) and growth hormone (GH) were significantly elevated at IP and 15P in all conditions. The GH response was significantly lower, however, in S and P than in BL. The TT and GH responses did not differ between S and P. These results indicated that a supplement consisting of amino acids, creatine, taurine, caffeine, and glucuronolactone can modestly improve high-intensity endurance; however, the anabolic-hormonal response was not augmented.

Restricted access

Jay Hoffman, Nicholas Ratamess, Jie Kang, Gerald Mangine, Avery Faigenbaum, and Jeffrey Stout

The effects of creatine and creatine plus β-alanine on strength, power, body composition, and endocrine changes were examined during a 10-wk resistance training program in collegiate football players. Thirty-three male subjects were randomly assigned to either a placebo (P), creatine (C), or creatine plus β-alanine (CA) group. During each testing session subjects were assessed for strength (maximum bench press and squat), power (Wingate anaerobic power test, 20-jump test), and body composition. Resting blood samples were analyzed for total testosterone, cortisol, growth hormone, IGF-1, and sex hormone binding globulin. Changes in lean body mass and percent body fat were greater (P < 0.05) in CA compared to C or P. Significantly greater strength improvements were seen in CA and C compared to P. Resting testosterone concentrations were elevated in C, however, no other significant endocrine changes were noted. Results of this study demonstrate the efficacy of creatine and creatine plus β-alanine on strength performance. Creatine plus β-alanine supplementation appeared to have the greatest effect on lean tissue accruement and body fat composition.

Restricted access

James A. Betts, Keith A. Stokes, Rebecca J. Toone, and Clyde Williams

Endocrine responses to repeated exercise have barely been investigated, and no data are available regarding the mediating influence of nutrition. On 3 occasions, participants ran for 90 min at 70% VO2max (R1) before a second exhaustive treadmill run at the same intensity (R2; 91.6 ± 17.9 min). During the intervening 4-hr recovery, participants ingested either 0.8 g sucrose · kg−1 · hr−1 with 0.3 g · kg−1 · hr−1 whey-protein isolate (CHO-PRO), 0.8 g sucrose · kg−1 · hr−1 (CHO), or 1.1 g sucrose · kg−1 · hr−1 (CHO-CHO). The latter 2 solutions therefore matched the former for carbohydrate or for available energy, respectively. Serum growth-hormone concentrations increased from 2 ± 1 μg/L to 17 ± 8 μg/L during R1 considered across all treatments (M ± SD; p ≤ .01). Concentrations were similar immediately after R2 irrespective of whether CHO or CHO-CHO was ingested (19 ± 4 μg/L and 19 ± 5 μg/L, respectively), whereas ingestion of CHO-PRO produced an augmented response (31 ± 4 μg/L; p ≤ .05). Growth-hormone-binding protein concentrations were unaffected by R1 but increased similarly across all treatments during R2 (from 414 ± 202 pmol/L to 577 ± 167 pmol/L; p ≤ .01), as was the case for plasma total testosterone (from 9.3 ± 3.3 nmol/L to 14.7 ± 4.6 nmol/L; p ≤ .01). There was an overall treatment effect for serum cortisol (p ≤ .05), with no specific differences at any given time point but lower concentrations immediately after R2 with CHO-PRO (608 ± 133 nmol/L) than with CHO (796 ± 278 nmol/L) or CHO-CHO (838 ± 134 nmol/L). Ingesting carbohydrate with added whey-protein isolate during short-term recovery from 90 min of treadmill running increases the growth-hormone response to a second exhaustive exercise bout of similar duration.