Search Results

You are looking at 11 - 12 of 12 items for

  • Author: Asker Jeukendrup x
Clear All Modify Search
Restricted access

Milou Beelen, Jort Berghuis, Ben Bonaparte, Sam B. Ballak, Asker E. Jeukendrup and Luc J.C van Loon

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.

Restricted access

Maria Francesca Piacentini, Oliver C. Witard, Cajsa Tonoli, Sarah R. Jackman, James E. Turner, Arie K. Kies, Asker E. Jeukendrup, Kevin D. Tipton and Romain Meeusen

Context:

Monitoring mood state is a useful tool for avoiding nonfunctional overreaching. Brain-derived neurotrophic factor (BDNF) is implicated in stress-related mood disorders.

Purpose:

To investigate the impact of intensified training-induced mood disturbance on plasma BDNF concentrations at rest and in response to exercise.

Methods:

Eight cyclists performed 1 wk of normal (NT), 1 wk of intensified (INT), and 1 wk of recovery (REC) training. Fasted blood samples were collected before and after exercise on day 7 of each training week and analyzed for plasma BDNF and cortisol concentrations. A 24-item Profile of Mood State questionnaire was administered on day 7 of each training week, and global mood score (GMS) was calculated.

Results:

Time-trial performance was impaired during INT (P = .01) and REC (P = .02) compared with NT. Basal plasma cortisol (NT = 153 ± 16 ng/mL, INT = 130 ± 11 ng/mL, REC = 150 ± 14 ng/ml) and BDNF (NT = 484 ± 122 pg/mL, INT = 488 ± 122 pg/mL, REC = 383 ± 56 pg/mL) concentrations were similar between training conditions. Likewise, similar exercise-induced increases in cortisol and BDNF concentrations were observed between training conditions. GMS was 32% greater during INT vs NT (P < .001).

Conclusions:

Consistent with a state of functional overreaching (FOR), impairments in performance and mood state with INT were restored after 1 wk of REC. These results support evidence for mood changes before plasma BDNF concentrations as a biochemical marker of FOR and that cortisol is not a useful marker for predicting FOR.