Search Results

You are looking at 11 - 16 of 16 items for

  • Author: Hans-Christer Holmberg x
Clear All Modify Search
Restricted access

Billy Sperlich, Karsten Koehler, Hans-Christer Holmberg, Christoph Zinner and Joachim Mester

Purpose:

The aim of the study was to determine the cardiorespiratory and metabolic characteristics during intense and moderate table tennis (TT) training, as well as during actual match play conditions.

Methods:

Blood lactate concentration (Lac), heart rate (HR, beats per minute [bpm]), oxygen uptake (VO2), and energy expenditure (EE) in 7 male participants of the German junior national team (age: 14 ± 1 y, weight: 60.5 ± 5.6 kg height; 165 ± 8 cm) were examined during six training sessions (TS) and during an international match. The VO2 was measured continuously with portable gas analyzers. Lac was assessed every 1 to 3 min during short breaks.

Results:

Mean (peak) values for Lac, HR, VO2, and EE during the TS were 1.2 ± 0.7 (4.5) mmol·L–1, 135 ± 18 (184) bpm, 23.5 ± 7.3 (43.0) mL·kg–1· min–1, and 6.8 ± 2.0 (11.2) METs, respectively. During match play, mean (peak) values were 1.1 ± 0.2 (1.6) mmol·L–1, 126 ± 22 (189) bpm, 25.6 ± 10.1 (45.9) mL·kg–1·min–1, and 4.8 ± 1.4 (9.6) METs, respectively.

Conclusions:

For the frst time, cardiorespiratory and metabolic data in elite junior table tennis have been documented demonstrating low cardiorespiratory and metabolic demands during TT training and match play in internationally competing juniors.

Restricted access

Matthias W. Hoppe, Christian Baumgart, Jutta Bornefeld, Billy Sperlich, Jürgen Freiwald and Hans-Christer Holmberg

The aims of this study were (1) to assess the running activities of adolescent tennis players during match play with respect to velocity, acceleration, and deceleration; (2) to characterize changes in these activities during the course of a match; and (3) to identify potential differences between winners and losers. Twenty well-trained adolescent male athletes (13 ± 1 y) played one simulated match each (giving a total of 10 matches), during which distances covered at different velocity categories (0 to < 1, 1 to < 2, 2 to < 3, 3 to < 4, and ≥ 4 m·s−1) and number of running activities involving high velocity (≥ 3 m·s−1), acceleration (≥ 2 m·s−2), and deceleration (≤ −2 m·s−2) were monitored using a global positioning system (10 Hz). Heart rate was also assessed. The total match time, total distance covered, peak velocity, and mean heart rate were 81.2 ± 14.6 min, 3362 ± 869 m, 4.4 ± 0.8 ms−1, and 159 ± 12 beats min−1, respectively. Running activities involving high acceleration (0.6 ± 0.2 n·min−1) or deceleration (0.6 ± 0.2 n·min−1) were three times as frequent as those involving high velocity (0.2 ± 0.1 n·min−1). No change in the pattern of running activities (P ≥ .13, d ≤ 0.39) and no differences between winners and losers (P ≥ .22, d ≤ 0.53) were evident during match play. We conclude that training of well-trained adolescent male tennis players need not focus on further development of their running abilities, since this physical component of multifactorial tennis performance does not change during the course of a match and does not differ between the winners and losers.

Restricted access

Billy Sperlich, Dennis-Peter Born, Christoph Zinner, Anna Hauser and Hans-Christer Holmberg

Purpose:

To evaluate whether upper-body compression affects power output and selected metabolic, cardiorespiratory, hemodynamic, and perceptual responses during three 3-min sessions of double-poling (DP) sprint.

Method:

Ten well-trained male athletes (25 ± 4 y, 180 ± 4 cm, 74.6 ± 3.2 kg) performed such sprints on a DP ski ergometer with and without a long-sleeved compression garment.

Result:

Mean power output was not affected by such compression (216 ± 25 W in both cases; P = 1.00, effect size [ES] = 0.00), although blood lactate concentration was lowered (P < .05, ES = 0.50–1.02). Blood gases (ES = 0.07–0.50), oxygen uptake (ES = 0.04–0.28), production of carbon dioxide (ES = 0.01–0.46), heart rate (ES = 0.00–0.21), stroke volume (ES = 0.33–0.81), and cardiac output (ES = 0.20–0.91) were also all unaffected by upper-body compression (best P = 1.00). This was also the case for changes in the tissue saturation index (ES = 0.45–1.17) and total blood content of hemoglobin (ES = 0.09–0.85), as well as ratings of perceived exertion (ES = 0.15–0.88; best P = .96).

Conclusion:

The authors conclude that the performance of well-trained athletes during 3 × 3-min DP sprints will not be enhanced by upper-body compression.

Restricted access

Dennis-Peter Born, Christoph Zinner, Britta Herlitz, Katharina Richter, Hans-Christer Holmberg and Billy Sperlich

Purpose:

The current investigation assessed tissue oxygenation and local blood volume in both vastus lateralis muscles during 3000-m race simulations in elite speed skaters on ice and the effects of leg compression on physiological, perceptual, and performance measures.

Methods:

Ten (6 female) elite ice speed skaters completed 2 on-ice trials with and without leg compression. Tissue oxygenation and local blood volume in both vastus lateralis muscles were assessed with near-infrared spectroscopy. Continuous measures of oxygen uptake, ventilation, heart rate, and velocity were conducted throughout the race simulations, as well as blood lactate concentration and ratings of perceived exertion before and after the trials. In addition, lap times were assessed.

Results:

The investigation of tissue oxygenation in both vastus lateralis muscles revealed an asymmetry (P < .00; effect size = 1.81) throughout the 3000-m race simulation. The application of leg compression did not affect oxygenation asymmetry (smallest P = .99; largest effect size = 0.31) or local blood volume (P = .33; 0.95). Lap times (P = .88; 0.43), velocity (P = .24; 0.84), oxygen uptake (P = .79; 0.10), ventilation (P = .11; 0.59), heart rate (P = .21; 0.89), blood lactate concentration (P = .82; 0.59), and ratings of perceived exertion (P = .19; 1.01) were also unaffected by the different types of clothing.

Conclusion:

Elite ice speed skaters show an asymmetry in tissue oxygenation of both vastus lateralis muscles during 3000-m events remaining during the long gliding phases along the straight sections of the track. Based on the data, the authors conclude that there are no performance-enhancing benefits from wearing leg compression under a normal racing suit.

Restricted access

Laurent Mourot, Nicolas Fabre, Erik Andersson, Sarah Willis, Martin Buchheit and Hans-Christer Holmberg

Postexercise heart-rate (HR) recovery (HRR) indices have been associated with running and cycling endurance-exercise performance. The current study was designed (1) to test whether such a relationship also exists in the case of cross-country skiing (XCS) and (2) to determine whether the magnitude of any such relationship is related to the intensity of exercise before obtaining HRR indices. Ten elite male cross-country skiers (mean ± SD; 28.2 ± 5.4 y, 181 ± 8 cm, 77.9 ± 9.4 kg, 69.5 ± 4.3 mL · min−1 · kg−1 maximal oxygen uptake [VO2max]) performed 2 sessions of roller-skiing on a treadmill: a 2 × 3-km time trial and the same 6-km at an imposed submaximal speed followed by a final 800-m time trial. VO2 and HR were monitored continuously, while HRR and blood lactate (BLa) were assessed during 2 min immediately after each 6-km and the 800-m time trial. The 6-km time-trial time was largely negatively correlated with VO2max and BLa. On the contrary, there was no clear correlation between the 800-m time-trial time and VO2, HR, or BLa. In addition, in no case was any clear correlation between any of the HRR indices and performance time or VO2max observed. These findings confirm that XCS performance is largely correlated with VO2max and the ability to tolerate high levels of BLa; however, postexercise HRR showed no clear association with performance. The homogeneity of the group of athletes involved and the contribution of the arms and upper body to the exercise preceding determination of HRR may explain this absence of a relationship.

Restricted access

Billy Sperlich, Silvia Achtzehn, Mirijam Buhr, Christoph Zinner, Stefan Zelle and Hans-Christer Holmberg

Purpose:

This study aimed to quantify the intensity profile of elite downhill mountain bike races during competitions.

Methods:

Seventeen male downhill racers (22 ± 5 y; 185.1 ± 5.3 cm; 68.0 ± 3.9 kg; VO2peak: 59.4 ± 4.1 mL·min·kg−1) participated in the International German Downhill Championships in 2010. The racers’ peak oxygen uptake and heart rate (HR) at 2 and 4 mmol·L−1 blood lactate (HR2 and HR4), were assessed during an incremental laboratory step test (100 W, increase 40 W every 5 min). During the races, the HR was recorded and pre- and postrace blood lactate concentrations as well as salivary cortisol levels were obtained.

Results:

During the race, the absolute time spent in the “easy” intensity zone was 23.3 ± 6.8 s, 24.2 ± 12.8 s (HR2–HR4) in the “moderate” zone, and 151.6 ± 18.3 s (>HR4) in the “hard” zone. Eighty percent of the entire race was accomplished at intensities >90% HRpeak. Blood lactate concentrations postrace were higher than those obtained after the qualification heat (8.0 ± 2.5 mmol·L−1 vs 6.7 ± 1.8 mmol·L−1, P < .01). Salivary levels of cortisol before the competition and the qualification heat were twice as high as at resting state (P < .01).

Conclusions:

This study shows that mountain bike downhill races are conducted at high heart rates and levels of blood lactate as well as increased concentration of salivary cortisol as marker for psycho-physiological stress.