Search Results

You are looking at 11 - 20 of 30 items for

  • Author: James P. Morton x
Clear All Modify Search
Restricted access

Sally P. Waterworth, Connor C. Spencer, Aaron L. Porter and James P. Morton

The authors tested the hypothesis that perception of carbohydrate (CHO) availability augments exercise capacity in conditions of reduced CHO availability. Nine males completed a sleep-low train model comprising evening glycogen-depleting cycling followed by an exhaustive cycling protocol the next morning in the fasted state (30 min steady state at 95% lactate threshold followed by 1-min intervals at 80% peak power output until exhaustion). After the evening depletion protocol and prior to sleeping, subjects consumed (a) a known CHO intake of 6 g/kg body mass (TRAIN HIGH) or (b) a perceived comparable CHO intake but 0 g/kg body mass (PERCEPTION) or a known train-low condition of 0 g/kg body mass (TRAIN LOW). The TRAIN HIGH and PERCEPTION trials were conducted double blind. During steady state, average blood glucose and CHO oxidation were significantly higher in TRAIN HIGH (4.01 ± 0.56 mmol/L; 2.17 ± 0.70 g/min) versus both PERCEPTION (3.30 ± 0.57 mmol/L; 1.69 ± 0.64 g/min, p < .05) and TRAIN LOW (3.41 ± 0.74 mmol/L; 1.61 ± 0.59 g/min, p < .05). Exercise capacity was significantly different between all pairwise comparisons (p < .05), where TRAIN LOW (8 ± 8 min) < PERCEPTION (12 ± 6 min) < TRAIN HIGH (22 ± 9 min). Data demonstrate that perception of CHO availability augments high-intensity intermittent exercise capacity under sleep-low, train-low conditions, though this perception does not restore exercise capacity to that of CHO consumption. Such data have methodological implications for future research designs and may also have practical applications for athletes who deliberately practice elements of training in CHO-restricted states.

Restricted access

Jordan Milsom, Paulo Barreira, Darren J. Burgess, Zafar Iqbal and James P. Morton

The onset of injury and subsequent period of immobilization and disuse present major challenges to maintenance of skeletal muscle mass and function. Although the characteristics of immobilization-induced muscle atrophy are well documented in laboratory studies, comparable data from elite athletes in free-living conditions are not readily available. We present a 6-month case-study account from a professional soccer player of the English Premier League characterizing rates of muscle atrophy and hypertrophy (as assessed by DXA) during immobilization and rehabilitation after ACL injury. During 8 weeks of inactivity and immobilization, where the athlete adhered to a low carbohydrate-high protein diet, total body mass decreased by 5 kg attributable to 5.8 kg loss and 0.8 kg gain in lean and fat mass, respectively. Changes in whole-body lean mass was attributable to comparable relative decreases in the trunk (12%, 3.8 kg) and immobilized limb (13%, 1.4 kg) whereas the nonimmobilized limb exhibited smaller declines (7%, 0.8 kg). In Weeks 8 to 24, the athlete adhered to a moderate carbohydrate-high protein diet combined with structured resistance and field based training for both the lower and upper-body that resulted in whole-body muscle hypertrophy (varying from 0.5 to 1 kg per week). Regional hypertrophy was particularly pronounced in the trunk and nonimmobilized limb during weeks 8 to 12 (2.6 kg) and 13 to 16 (1.3 kg), respectively, whereas the previously immobilized limb exhibited slower but progressive increases in lean mass from Week 12 to 24 (1.2 kg). The athlete presented after the totality of the injured period with an improved anthropometrical and physical profile.

Restricted access

Ryland Morgans, Adam Owen, Dominic Doran, Barry Drust and James P. Morton

Purpose:

To monitor resting salivary secretory immunoglobulin A (SIgA) levels in international soccer players during the short-term training period that precedes international match play.

Methods:

In a repeated-measure design, saliva samples were obtained from 13 outfield soccer players who participated in the training camps preceding 7 games (5 home and 2 away) of the 2014 FIFA World Cup qualifying campaign. Samples were obtained daily for 4 d preceding each game (and analyzed for SIgA using the IPRO oral-fluid-collection system) at match day minus 1 (MD-1), minus 2 (MD-2), minus 3 (MD-3), and minus 4 (MD-4).

Results:

SIgA displayed a progressive decline (P = .01) during the 4-d training period (MD-4, 365 ± 127 μg/mL; MD-3, 348 ± 154 μg/mL; MD-2, 290 ± 138 μg/mL; MD-1, 256 ± 90 μg/mL) such that MD-1 values were significantly lower (P = .01) than both MD-4 and MD-3. The 95% confidence intervals for the differences between MD-1 and MD-4 were –191 to –26 and between MD-1 and MD-3 were –155 to –28.

Conclusions:

Data demonstrate that a short-term soccer-training camp in preparation for international competition induces detectable perturbations to mucosal immunity. Future studies should monitor SIgA (as a practical and noninvasive measure of immunity) alongside internal and external measures of training load in an attempt to strategically individualize training and nutritional strategies that may support optimal preparation for high-level competition.

Restricted access

George Wilson, Jerry Hill, Daniel Martin, James P. Morton and Graeme L. Close

Flat jockeys in Great Britain (GB) are classified as apprentices if they are aged less than 26 years and/or have ridden less than 95 winners. To gain experience, apprentices are allocated a weight allowance of up to 7 lb (3.2 kg). Given that there is no off-season in GB flat horseracing, jockeys are required to maintain their racing weight all year round. In light of recent work determining that current apprentices are considerably heavier than previous generations and that smaller increases have been made in the minimum weight, the aim of this study was to assess if the minimum weight in GB was achievable. To make the minimum weight (50.8 kg) with the maximal weight allowance requires a body mass of ∼46.6 kg while maintaining a fat mass >2.5 kg (the lowest fat mass previously reported in weight-restricted males). Thirty-two male apprentice jockeys were assessed for body composition using dual-energy X-ray absorptiometry. The mean (SD) total mass and fat mass were 56 (2.9) kg and 7.2 (1.8) kg, respectively. Given that the lowest theoretical body mass for this group was 51.2 (2.3) kg, only one of 32 jockeys was deemed feasible to achieve the minimum weight with their current weight allowance and maintaining fat mass >2.5 kg. Furthermore, urine osmolality of 780 (260) mOsmol/L was seen, with 22 (out of 32) jockeys classed as dehydrated (>700 mOsmols/L), indicating that body mass would be higher when euhydrated. Additionally, we observed that within new apprentice jockeys licensed during this study (N = 41), only one jockey was able to achieve the minimum weight. To facilitate the goal of achieving race weight with minimal disruptions to well-being, the authors’ data suggest that the minimum weight for GB apprentices should be raised.

Restricted access

George Wilson, Neil Chester, Martin Eubank, Ben Crighton, Barry Drust, James P. Morton and Graeme L. Close

Professional jockeys are unique among weight-making athletes, as they are often required to make weight daily and, in many cases, all year-round. Common methods employed by jockeys include dehydration, severe calorie restriction, and sporadic eating, all of which have adverse health effects. In contrast, this article outlines a structured diet and exercise plan, employed by a 22-yr-old professional National Hunt jockey in an attempt to reduce weight from 70.3 to 62.6 kg, that does not rely on any of the aforementioned techniques. Before the intervention, the client’s typical daily energy intake was 8.2 MJ (42% carbohydrate [CHO], 36% fat, 22% protein) consumed in 2 meals only. During the 9-wk intervention, daily energy intake was approximately equivalent to resting metabolic rate, which the athlete consumed as 6 meals per day (7.6 MJ, 46% CHO, 19% fat, 36% protein). This change in frequency and composition of energy intake combined with structured exercise resulted in a total body-mass loss of 8 kg, corresponding to reductions in body fat from 14.5% to 9%. No form of intentional dehydration occurred throughout this period, and mean urine osmolality was 285 mOsm/kg (SD 115 mOsm/kg). In addition, positive changes in mood scores (BRUMS scale) also occurred. The client was now able to ride light for the first time in his career without dehydrating, thereby challenging the cultural practices inherent in the sport.

Restricted access

Llion A. Roberts, Kris Beattie, Graeme L. Close and James P. Morton

Purpose:

To test the hypothesis that antioxidants can attenuate high-intensity interval training–induced improvements in exercise performance.

Methods:

Two groups of recreationally active males performed a high-intensity interval running protocol, four times per week for 4 wk. Group 1 (n = 8) consumed 1 g of vitamin C daily throughout the training period, whereas Group 2 (n = 7) consumed a visually identical placebo. Pre- and posttraining, subjects were assessed for VO2max, 10 km time trial, running economy at 12 km/h and distance run on the YoYo intermittent recovery tests level 1 and 2 (YoYoIRT1/2). Subjects also performed a 60 min run before and after training at a running velocity of 65% of pretraining VO2max so as to assess training-induced changes in substrate oxidation rates.

Results:

Training improved (P < .0005) VO2max, 10 km time trial, running economy, YoYoIRT1 and YoYoIRT2 in both groups, although there was no difference (P = .31, 0.29, 0.24, 0.76 and 0.59) between groups in the magnitude of training-induced improvements in any of the aforementioned parameters. Similarly, training also decreased (P < .0005) mean carbohydrate and increased mean fat oxidation rates during submaximal exercise in both groups, although no differences (P = .98 and 0.94) existed between training conditions.

Conclusions:

Daily oral consumption of 1 g of vitamin C during a 4 wk high-intensity interval training period does not impair training-induced improvements in the exercise performance of recreationally active males.

Full access

Louise M. Burke, Graeme L. Close, Bronwen Lundy, Martin Mooses, James P. Morton and Adam S. Tenforde

Low energy availability (LEA) is a key element of the Female Athlete Triad. Causes of LEA include failure to match high exercise energy expenditure (unintentional) or pathological behaviors of disordered eating (compulsive) and overzealous weight control programs (misguided but intentional). Recognition of such scenarios in male athletes contributed to the pronouncement of the more inclusive Relative Energy Deficiency in Sport (RED-S) syndrome. This commentary describes the insights and experience of the current group of authors around the apparently heightened risk of LEA in some populations of male athletes: road cyclists, rowers (lightweight and open weight), athletes in combat sports, distance runners, and jockeys. The frequency, duration, and magnitude of the LEA state appear to vary between populations. Common risk factors include cyclical management of challenging body mass and composition targets (including “making weight”) and the high energy cost of some training programs or events that is not easily matched by energy intake. However, additional factors such as food insecurity and lack of finances may also contribute to impaired nutrition in some populations. Collectively, these insights substantiate the concept of RED-S in male athletes and suggest that a specific understanding of a sport, subpopulation, or culture may identify a complex series of factors that can contribute to LEA and the type and severity of its outcomes. This commentary provides a perspective on the range of risk factors that should be addressed in future surveys of RED-S in athletic populations and targeted for specific investigation and modification.

Full access

Louise M. Burke, John A. Hawley, Asker Jeukendrup, James P. Morton, Trent Stellingwerff and Ronald J. Maughan

From the breakthrough studies of dietary carbohydrate and exercise capacity in the 1960s through to the more recent studies of cellular signaling and the adaptive response to exercise in muscle, it has become apparent that manipulations of dietary fat and carbohydrate within training phases, or in the immediate preparation for competition, can profoundly alter the availability and utilization of these major fuels and, subsequently, the performance of endurance sport (events >30 min up to ∼24 hr). A variety of terms have emerged to describe new or nuanced versions of such exercise–diet strategies (e.g., train low, train high, low-carbohydrate high-fat diet, periodized carbohydrate diet). However, the nonuniform meanings of these terms have caused confusion and miscommunication, both in the popular press and among the scientific community. Sports scientists will continue to hold different views on optimal protocols of fuel support for training and competition in different endurance events. However, to promote collaboration and shared discussions, a commonly accepted and consistent terminology will help to strengthen hypotheses and experimental/experiential data around various strategies. We propose a series of definitions and explanations as a starting point for a more unified dialogue around acute and chronic manipulations of fat and carbohydrate in the athlete’s diet, noting philosophies of approaches rather than a single/definitive macronutrient prescription. We also summarize some of the key questions that need to be tackled to help produce greater insight into this exciting area of sports nutrition research and practice.

Restricted access

Andreas M. Kasper, Ben Crighton, Carl Langan-Evans, Philip Riley, Asheesh Sharma, Graeme L. Close and James P. Morton

The aim of the present case study was to quantify the physiological and metabolic impact of extreme weight cutting by an elite male mixed martial arts athlete. Throughout an 8-week period, we obtained regular assessments of body composition, resting metabolic rate, peak oxygen uptake, and blood clinical chemistry to assess endocrine status, lipid profiles, hydration, and kidney function. The athlete adhered to a “phased” weight loss plan consisting of 7 weeks of reduced energy (ranging from 1,300 to 1,900 kcal/day) intake (Phase 1), 5 days of water loading with 8 L/day for 4 days followed by 250 ml on Day 5 (Phase 2), 20 hr of fasting and dehydration (Phase 3), and 32 hr of rehydration and refueling prior to competition (Phase 4). Body mass declined by 18.1% (80.2 to 65.7 kg) corresponding to changes of 4.4, 2.8, and 7.3 kg in Phases 1, 2, and 3, respectively. We observed clear indices of relative energy deficiency, as evidenced by reduced resting metabolic rate (−331 kcal), inability to complete performance tests, alterations to endocrine hormones (testosterone: <3 nmol/L), and hypercholesterolemia (>6 mmol/L). Moreover, severe dehydration (reducing body mass by 9.3%) in the final 24 hr prior to weigh-in-induced hypernatremia (plasma sodium: 148 mmol/L) and acute kidney injury (serum creatinine: 177 μmol/L). These data, therefore, support publicized reports of the harmful (and potentially fatal) effects of extreme weight cutting in mixed martial arts athletes and represent a call for action to governing bodies to safeguard the welfare of mixed martial arts athletes.

Restricted access

Liam Anderson, Patrick Orme, Rocco Di Michele, Graeme L. Close, Jordan Milsom, Ryland Morgans, Barry Drust and James P. Morton

Purpose:

To quantify the accumulative training and match load during an annual season in English Premier League soccer players classified as starters (n = 8, started ≥60% of games), fringe players (n = 7, started 30–60% of games) and nonstarters (n = 4, started <30% of games).

Methods

Players were monitored during all training sessions and games completed in the 2013–14 season with load quantified using global positioning system and Prozone technology, respectively.

Results:

When including both training and matches, total duration of activity (10,678 ± 916, 9955 ± 947, 10,136 ± 847 min; P = .50) and distance covered (816.2 ± 92.5, 733.8 ± 99.4, 691.2 ± 71.5 km; P = .16) were not different between starters, fringe players, and nonstarters, respectively. However, starters completed more (all P < .01) distance running at 14.4–19.8 km/h (91.8 ± 16.3 vs 58.0 ± 3.9 km; effect size [ES] = 2.5), high-speed running at 19.9–25.1 km/h (35.0 ± 8.2 vs 18.6 ± 4.3 km; ES = 2.3), and sprinting at >25.2 km/h (11.2 ± 4.2 vs 2.9 ± 1.2 km; ES = 2.3) than nonstarters. In addition, starters also completed more sprinting (P < .01, ES = 2.0) than fringe players, who accumulated 4.5 ± 1.8 km. Such differences in total high-intensity physical work done were reflective of differences in actual game time between playing groups as opposed to differences in high-intensity loading patterns during training sessions.

Conclusions

Unlike total seasonal volume of training (ie, total distance and duration), seasonal high-intensity loading patterns are dependent on players’ match starting status, thereby having potential implications for training program design.