Search Results

You are looking at 11 - 20 of 37 items for

  • Author: Mark L. Latash x
Clear All Modify Search
Restricted access

Mark L. Latash and Irina L. Mikaelian

We explored the relations between task difficulty and speech time in picture description tasks. Six native speakers of Mandarin Chinese (CH group) and six native speakers or Indo-European languages (IE group) produced quick and accurate verbal descriptions of pictures in a self-paced manner. The pictures always involved two objects, a plate and one of the three objects (a stick, a fork, or a knife) located and oriented differently with respect to the plate in different trials. An index of difficulty was assigned to each picture. CH group showed lower reaction time and much lower speech time. Speech time scaled linearly with the log-transformed index of difficulty in all subjects. The results suggest generality of Fitts’ law for movement and speech tasks, and possibly for other cognitive tasks as well. The differences between the CH and IE groups may be due to specific task features, differences in the grammatical rules of CH and IE languages, and possible use of tone for information transmission.

Restricted access

Israel M. Gelfand and Mark L. Latash

An adequate language is a prerequisite for progress in any area of science, including movement science. Notions of structural units and synergies and the principle of minimal interaction are revisited, discussed, and illustrated with a few examples from recent studies. Equilibrium-point hypothesis is considered an example of identifying significant variables in the control of a voluntary movement.

Open access

Daniel M. Corcos and Mark L. Latash

Restricted access

Momoko Yamagata, Ali Falaki and Mark L. Latash

We explored the effects of voluntary coactivation of agonist–antagonist leg and trunk muscles on stability of vertical posture. Young healthy subjects performed several tasks while standing with no additional muscle coactivation, low coactivation, and high coactivation. Postural stability was estimated using indices of postural sway and of intertrial variance in the space of muscle groups with parallel scaling of activation levels (M-modes). An increase in coactivation led to a significant increase in the postural sway speed reflected in faster rambling and trembling trajectories. Coactivation also led to a relative drop in the variance component that had no effects on the center of pressure coordinate and an increase in the component that shifted the center of pressure. We conclude that additional muscle coactivation does not help to stabilize vertical posture and is more likely to lead to postural destabilization. The results are consistent with an earlier hypothesis on muscle coactivation ensuring abundance (excessive degrees of freedom) at the level of control variables.

Restricted access

Stacey L. Gorniak, Marcos Duarte and Mark L. Latash

We explored possible effects of negative covariation among finger forces in multifinger accurate force production tasks on the classical Fitts’s speed-accuracy trade-off. Healthy subjects performed cyclic force changes between pairs of targets “as quickly and accurately as possible.” Tasks with two force amplitudes and six ratios of force amplitude to target size were performed by each of the four fingers of the right hand and four finger combinations. There was a close to linear relation between movement time and the log-transformed ratio of target amplitude to target size across all finger combinations. There was a close to linear relation between standard deviation of force amplitude and movement time. There were no differences between the performance of either of the two “radial” fingers (index and middle) and the multifinger tasks. The “ulnar” fingers (little and ring) showed higher indices of variability and longer movement times as compared with both “radial” fingers and multifinger combinations. We conclude that potential effects of the negative covariation and also of the task-sharing across a set of fingers are counterbalanced by an increase in individual finger force variability in multifinger tasks as compared with single-finger tasks. The results speak in favor of a feed-forward model of multifinger synergies. They corroborate a hypothesis that multifinger synergies are created not to improve overall accuracy, but to allow the system larger flexibility, for example to deal with unexpected perturbations and concomitant tasks.

Restricted access

Mark L. Latash, Fan Gao and Vladimir M. Zatsiorsky

The method of multidimensional scaling was applied to matrices of finger interaction (IFM) computed for individual participants for finger force production tasks. When IFMs for young controls, elderly, and persons with Down syndrome were pooled, only two dimensions described interpersonal differences; these were related to total force and to the total amount of enslaving. When IFMs for each group were analyzed separately, subpopulation-specific dimensions were found. Potentially, this analysis can be applied to discover meaningful dimensions that reflect differences in indices of finger interaction across and within subpopulations which differ in their apparent ability to use the hand. It may also be useful for tracking changes in finger interaction that occur in the process of specialized training or motor rehabilitation.

Restricted access

Mark L. Latash

Edited by D.J. Glencross and J.P. Piek

Restricted access

Adriana M. Degani, Alessander Danna-Dos-Santos and Mark L. Latash

We tested the hypothesis that a sequence of mechanical events occurs preceding a step that scales in time and magnitude as a whole in a task-specific manner, and is a reflection of a “motor program.” Young subjects made a step under three speed instructions and four tasks: stepping straight ahead, down a stair, up a stair, and over an obstacle. Larger center-of-pressure (COP) and force adjustments in the anteriorposterior direction and smaller COP and force adjustments in the mediolateral direction were seen during stepping forward and down a stair, as compared with the tasks of stepping up a stair and over an obstacle. These differences were accentuated during stepping under the simple reaction time instruction. These results speak against the hypothesis of a single motor program that would underlie postural preparation to stepping. They are more compatible with the reference configuration hypothesis of whole-body actions.