Search Results

You are looking at 11 - 19 of 19 items for

  • Author: Richard E.A. van Emmerik x
Clear All Modify Search
Restricted access

Jack R. Engsberg, Richard E. A. Van Emmerik, Sandy A. Ross and David R. Collins

This investigation developed a measure of motor control at the ankle for persons with CP using relative phase. Twenty-nine subjects, 14 with spastic diplegia cerebral palsy (CP group) and 15 without disability (WD group) were tested once. Video data were collected as a seated subject performed four full range of ankle plantar and dorsiflexion movement tasks (right ankle, left ankle, ankles in-phase with each other, and ankles antiphase to each other) at four different frequencies (self-paced, 0.5, 0.75, 1.0 Hz). The relative phase measure was able to discern the differences between the two groups of children. The CP group had poorer motor control than the WD group, based upon the measure. Both groups had more difficulty performing the antiphase than the in-phase movements. The investigation adds to the body of knowledge in that the concept of relative phase was used as a measure of motor control at the ankle in persons with CP. Results indicated that the measure was adequately sensitive to quantify differences between a group with CP and a group without disability. Clinically the measure could eventually be used as both an assessment and outcome tool.

Restricted access

Richard E.A. van Emmerik, Stephanie L. Jones, Michael A. Busa and Jennifer L. Baird

Postural instability, falls, and fear of falling that accompany frailty with aging and disease form major impediments to physical activity. In this article we present a theoretical framework that may help researchers and practitioners in the development and delivery of intervention programs aimed at reducing falls and improving postural stability and locomotion in older individuals and in those with disability due to disease. Based on a review of the dynamical and complex systems perspectives of movement coordination and control, we show that 1) central to developing a movement-based intervention program aimed at fall reduction and prevention is the notion that variability can play a functional role and facilitate movement adaptability, 2) intervention programs aimed at fall reduction should focus more on coordination and stability boundary measures instead of traditional gait and posture outcome variables, and 3) noise-based intervention techniques using stochastic resonance may offer external aids to improve dynamic balance control.

Restricted access

Jeffrey M. Haddad, Richard E.A. van Emmerik, Jonathan S. Wheat, Joseph Hamill and Winona Snapp-Childs

A variety of kinematic and kinetic measures are typically used to examine gait symmetry. Here we make the argument that gait asymmetries may be most clearly revealed through higher-order coordinative measures such as continuous relative phase (CRP). Participants walked on a treadmill with a load attached to their nondominant limb. Gait symmetry was then assessed using spatial (angular), temporal (velocity), and higherorder (CRP) symmetry measures. It was found that higher-order measures were most sensitive at assessing asymmetries due to load manipulation at both the distal and proximal segments. Symmetry measures derived from velocity variables were more sensitive than angular measures at detecting asymmetries, but were less sensitive compared with CRP. Asymmetries were also more readily detected using segmental angles compared with joint angles. These results suggest that gait asymmetries that emerge from changing constraints manifest along both spatial and temporal dimensions.

Restricted access

Jeffrey M. Haddad, Laura J. Claxton, Dawn K. Melzer, Joseph Hamill and Richard E. A. van Emmerik

Posture becomes integrated with other goal-directed behaviors early in infancy and continues to develop into the second decade of life. However, the developmental time course over which posture is stabilized relative to the base of support during a dynamic manual precision task has not been examined. Postural-manual integration was assessed in 7-year-olds, 10-year-olds, and adults using a postural-manual task in which task precision (target fitting size) and postural difficulty (reaching distance to a target) were manipulated. The main dependent variable was postural time-to-contact (TtC). Results indicated systematic age effects in which TtC was shortest in the 7-year-olds, increased in the 10-year-olds, and was longest in the adults. Across all age levels, TtC was longer when performing a precision ft compared with a nonprecision ft and when fitting at a near target compared with fitting at a far target. Finally, TtC increased over the course of the manual fitting task, suggesting that posture became increasingly stable as the hand approached the opening. The ability to modulate postural TtC during the course of the fitting trial was most pronounced in adults as compared with both groups of children. These results suggest that even by 10-years of age, children are not yet able to fully integrate postural movements with goal directed manual tasks at adult-like levels.

Restricted access

Jebb G. Remelius, Joseph Hamill, Jane Kent-Braun and Richard E.A. Van Emmerik

Individuals with multiple sclerosis (MS) often have poor balance control that is especially apparent during dynamic tasks such as gait initiation (GI). The purpose of this study was to investigate how balance symptoms due to MS alter spatiotemporal variables, coordination, and temporal margins within the stability boundary during gait initiation. Twelve women with MS (Expanded Disability Status Scale [EDSS] mean = 4.0, SD = 1.4) and 12 women without MS (control group) initiated gait at their preferred speed. MS participants attained a slower anterior velocity because of smaller anterior center of mass displacements and took longer to complete the initiation of gait than the control group. MS participants exhibited a smaller posterior shift in center of pressure during GI and stepped with a longer dual support time than the control group. However, these changes may be due to differences in initiation velocity. Relative timing analysis showed invariance in postural and locomotor phases of gait initiation between groups. The MS group showed different coordination between anterior-posterior and medio-lateral center of pressure components while increasing temporal margins to the posterior and lateral stability boundaries in comparison with the control group. Overall, during gait initiation at their preferred speed the MS participants adopted a functional strategy that produces lower speed and reduced proximity to the stability boundaries prior to stepping.

Restricted access

Joseph F. Seay, Jeffery M. Haddad, Richard E.A. van Emmerik and Joseph Hamill

Increases in movement variability have previously been observed to be a hallmark property of cooraination changes between coupled oscillators that occur as movement frequency is scaled. Prior research on the walk-run transition in human locomotion has also demonstrated increases in variability around the transition region, supporting predictions of nonequilibrium phase transitions (Diedrich & Warren, 1995). The current study examined the coordinative patterns of both intra- and inter-limb couplings around the walk-run transition using two different temporal manipulations of locomotor velocity as a control parameter in healthy young participants (N = 11). Coordination variability did not increase before the transition. The nature of the change in continuous relative phase variability between gait modes was coupling-specific, and varying the time spent at each velocity did not have an overall effect on gait transition dynamics. Lower extremity inter-limb coordination dynamics were more sensitive to changes in treadmill velocity than intra-limb coordination. The results demonstrate the complexity of segmental coordination change in human locomotion, and question the applicability of dynamical bimanual coordination models to human gait transitions.

Restricted access

Richard E.A. Van Emmerik, Michael T. Rosenstein, William J. McDermott and Joseph Hamill

Nonlinear dynamics and dynamical systems approaches and methodologies are increasingly being implemented in biomechanics and human movement research. Based on the early insights of Nicolai Bernstein (1967), a significantly different outlook on the movement control “problem” over the last few decades has emerged. From a focus on relatively simple movements has arisen a research focus with the primary goal to study movement in context, allowing the complexity of patterns to emerge. The approach taken is that the control of multiple degrees-of-freedom systems is not necessarily more difficult or complex than that of systems only comprising a few degrees of freedom. Complex patterns and dynamics might not require complex control structures. In this paper we present a tutorial overview of the mathematical underpinnings of nonlinear dynamics and some of its basic analysis tools. This should provide the reader with a basic level of understanding about the mathematical principles and concepts underlying pattern stability and change. This will be followed by an overview of dynamical systems approaches in the study of human movement. Finally, we discuss recent progress in the application of nonlinear dynamical techniques to the study of human locomotion, with particular focus on relative phase techniques for the assessment of coordination.

Restricted access

Christine D. Pollard, Bryan C. Heiderscheit, Richard E.A. van Emmerik and Joseph Hamill

The purpose of this study was to determine if gender differences exist in the variability of various lower extremity (LE) segment and joint couplings during an unanticipated cutting maneuver. 3-D kinematics were collected on 24 college soccer players (12 M, 12 F) while each performed the cutting maneuver. The following intralimb couplings were studied: thigh rotation (rot)/leg rot; thigh abduction-adduction/leg abd-add; hip abd-add/knee rot; hip rot/knee abd-add; knee flexion-extension/knee rot; knee flx-ext/hip rot. A vector-coding technique applied to angle-angle plots was used to quantify the coordination of each coupling. The average between-trial standard deviation of the coordination pattern during the initial 40% of stance was used to indicate the coordination variability. One-tailed t-tests were used to determine differences between genders in coordination variability for each coupling. Women had decreased variability in four couplings: 32% less thigh rot/leg rot variability; 40% less thigh abd-add/leg abd-add variability; 46% less knee flx-ext/knee rot variability; and 44% less knee flx-ext/hip rot variability. These gender differences in LE coordination variability may be associated with the increased incidence of ACL injury in women. If women exhibit less flexible coordination patterns during competition, they may be less able to adapt to the environmental perturbations experienced during sports. These perturbations applied to a less flexible system may result in ligament injury.

Restricted access

Jeffrey M. Haddad, Jeff L. Gagnon, Christopher J. Hasson, Richard E.A. Van Emmerik and Joseph Hamill

Postural stability has traditionally been examined through spatial measures of the center of mass (CoM) or center of pressure (CoP), where larger amounts of CoM or CoP movements are considered signs of postural instability. However, for stabilization, the postural control system may utilize additional information about the CoM or CoP such as velocity, acceleration, and the temporal margin to a stability boundary. Postural time-to-contact (TtC) is a variable that can take into account this additional information about the CoM or CoP. Postural TtC is the time it would take the CoM or CoP, given its instantaneous trajectory, to contact a stability boundary. This is essentially the time the system has to reverse any perturbation before stance is threatened. Although this measure shows promise in assessing postural stability, the TtC values derived between studies are highly ambiguous due to major differences in how they are calculated. In this study, various methodologies used to assess postural TtC were compared during quiet stance and induced-sway conditions. The effects of the different methodologies on TtC values will be assessed, and issues regarding the interpretation of TtC data will also be discussed.